Facile magnetization of covalent organic framework for solid-phase extraction of 15 phthalate esters in beverage samples
Phthalate esters (PAEs), a category of widely used plasticizers, are tend to migrate from plastic packaging to drinks. In this paper, we develop a simple and rapid coprecipitation method for synthesis of a magnetic covalent organic framework (COF) adsorbent. The fabricated COF-(TpBD)/Fe3O4 was appli...
Saved in:
Published in | Talanta (Oxford) Vol. 206; p. 120194 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Phthalate esters (PAEs), a category of widely used plasticizers, are tend to migrate from plastic packaging to drinks. In this paper, we develop a simple and rapid coprecipitation method for synthesis of a magnetic covalent organic framework (COF) adsorbent. The fabricated COF-(TpBD)/Fe3O4 was applied to magnetic solid phase extraction (MSPE) of 15 phthalate esters (PAEs) for subsequent GC-MS/MS determination in beverage samples. The as-synthesized magnetic adsorbent exhibited great potential in PAEs analysis with a limit of detection of 15 PAEs ranged from 0.005 to 2.748 μg L−1 (S/N = 3). The intra-day and inter-day relative standard deviations (RSD) value of the PAEs were less than 8.8% and 9.9%, respectively. The adsorbent can be reused after washing with methanol. The developed method was successfully applied for the determination of trace PAEs in eight beverages with recoveries ranging from 79.3% to 121.8% and RSDs were less than 11.9%. This work provides a simple magnetization process, which facilitates the application of COFs for enrichment and separation of PAEs in beverages with different matrices.
[Display omitted]
•A simple and rapid coprecipitation method for the preparation of a magnetic covalent organic framework.•COF-based magnetic solid phase extraction efficiently enrich 15 phthalate esters in beverage samples.•Method development for the simultaneous analysis of 15 phthalate esters by GC-MS/MS. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ISSN: | 0039-9140 1873-3573 |
DOI: | 10.1016/j.talanta.2019.120194 |