Lorentzian Para‐Kenmotsu Manifolds Within the Framework of ∗‐Conformal η ‐Ricci Soliton
The present article intends to study the ∗‐conformal η ‐Ricci soliton on n ‐LPK ( n ‐dimensional Lorentzian para‐Kenmotsu) manifolds with curvature constraints. On n ‐LPK, we derive certain results of ∗‐conformal η ‐Ricci soliton satisfying the Codazzi‐type equation, R ( ξ , L ) · S = 0, the project...
Saved in:
Published in | Journal of applied mathematics Vol. 2025; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
01.01.2025
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1110-757X 1687-0042 |
DOI | 10.1155/jama/6684661 |
Cover
Loading…
Summary: | The present article intends to study the ∗‐conformal η ‐Ricci soliton on n ‐LPK ( n ‐dimensional Lorentzian para‐Kenmotsu) manifolds with curvature constraints. On n ‐LPK, we derive certain results of ∗‐conformal η ‐Ricci soliton satisfying the Codazzi‐type equation, R ( ξ , L ) · S = 0, the projective flatness of the n ‐LPK manifold. At last, we conclude with an n ‐LPK manifold with conformal η ‐Ricci solitons using a suitable example. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/jama/6684661 |