Lorentzian Para‐Kenmotsu Manifolds Within the Framework of ∗‐Conformal η ‐Ricci Soliton

The present article intends to study the ∗‐conformal η ‐Ricci soliton on n ‐LPK ( n ‐dimensional Lorentzian para‐Kenmotsu) manifolds with curvature constraints. On n ‐LPK, we derive certain results of ∗‐conformal η ‐Ricci soliton satisfying the Codazzi‐type equation, R ( ξ , L ) · S = 0, the project...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied mathematics Vol. 2025; no. 1
Main Authors Kishor, Shyam, Bhardwaj, Arun Kumar, Mani, Naveen, Shukla, Rahul
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.01.2025
Wiley
Subjects
Online AccessGet full text
ISSN1110-757X
1687-0042
DOI10.1155/jama/6684661

Cover

Loading…
More Information
Summary:The present article intends to study the ∗‐conformal η ‐Ricci soliton on n ‐LPK ( n ‐dimensional Lorentzian para‐Kenmotsu) manifolds with curvature constraints. On n ‐LPK, we derive certain results of ∗‐conformal η ‐Ricci soliton satisfying the Codazzi‐type equation, R ( ξ , L ) · S = 0, the projective flatness of the n ‐LPK manifold. At last, we conclude with an n ‐LPK manifold with conformal η ‐Ricci solitons using a suitable example.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1110-757X
1687-0042
DOI:10.1155/jama/6684661