Maternal high-fat diet induces sex-specific endocannabinoid system changes in newborn rats and programs adiposity, energy expenditure and food preference in adulthood

Early life inadequate nutrition triggers developmental adaptations and adult chronic disease. Maternal high-fat (HF) diet promotes visceral obesity and hypothalamic leptin resistance in male rat offspring at weaning and adulthood. Obesity is related to over active endocannabinoid system (ECS). The E...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of nutritional biochemistry Vol. 51; pp. 56 - 68
Main Authors Dias-Rocha, Camilla P., Almeida, Mariana M., Santana, Erika M., Costa, Julia C.B., Franco, Juliana G., Pazos-Moura, Carmen C., Trevenzoli, Isis H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Early life inadequate nutrition triggers developmental adaptations and adult chronic disease. Maternal high-fat (HF) diet promotes visceral obesity and hypothalamic leptin resistance in male rat offspring at weaning and adulthood. Obesity is related to over active endocannabinoid system (ECS). The ECS consists mainly of endogenous ligands, cannabinoid receptors (CB1 and CB2), and the enzymes fatty acid anandamide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). We hypothesized that perinatal maternal HF diet would regulate offspring ECS in hypothalamus and brown adipose tissue (BAT) at birth, prior to visceral obesity development, and program food preference and energy expenditure of adult offspring. Female rats received control diet (C, 9% fat) or isocaloric high-fat diet (HF, 28% fat) for 8 weeks before mating, and throughout gestation and lactation. We evaluated C and HF offspring at birth and adulthood. At birth, maternal HF diet decreased leptinemia and increased hypothalamic CB1, orexin-A, and proopiomelanocortin while it decreased thyrotropin-releasing hormone (Trh) in male pups. Differentially, maternal HF diet increased hypothalamic CB2 in female pups. In BAT, maternal HF diet decreased CB1 and increased CB2 in male and female pups, respectively. Besides presenting different molecular ECS profile at birth, HF adult offspring developed overweight, higher adiposity and high-fat diet preference, independently of the sex, but only males presented hyperleptinemia and higher energy expenditure. In conclusion, maternal HF diet alters ECS components and energy metabolism targets in hypothalamus and BAT of offspring at birth, in a sex-specific manner, which may contribute for hyperphagia, food preference and higher adiposity later in life. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0955-2863
1873-4847
DOI:10.1016/j.jnutbio.2017.09.019