Ketogenic diet modulates cardiac metabolic dysregulation in streptozocin-induced diabetic rats

The ketogenic diet (KD) might improve cardiac function in diabetic cardiomyopathy, but the mechanisms remain unclear. This study investigated the effects of KD on myocardial fatty acid (FA), glucose, and ketone metabolism in diabetic cardiomyopathy. Echocardiograms, biochemistry, and micro-positron...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of nutritional biochemistry Vol. 111; p. 109161
Main Authors Trang, Nguyen Ngoc, Lee, Ting-Wei, Kao, Yu-Hsun, Chao, Tze‐Fan, Lee, Ting-I, Chen, Yi-Jen
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ketogenic diet (KD) might improve cardiac function in diabetic cardiomyopathy, but the mechanisms remain unclear. This study investigated the effects of KD on myocardial fatty acid (FA), glucose, and ketone metabolism in diabetic cardiomyopathy. Echocardiograms, biochemistry, and micro-positron emission tomography were performed to evaluate cardiac function and glucose uptake in control rats and streptozotocin-induced diabetes mellitus (DM) rats with normal diet (ND) or KD for 6 weeks. Histopathology, adenosine triphosphate measurement, and Western blot were performed in the ventricular myocytes to analyze fibrosis, FA, ketone body, and glucose utilization. The ND-fed DM rats exhibited impaired left ventricular systolic function and increased chamber dilatation, whereas control and KD-fed DM rats did not. The KD reduced myocardial fibrosis and apoptosis in the DM rats. Myocardial glucose uptake in the micro-positron emission tomography was similar between ND-fed DM rats and KD-fed DM rats and was substantially lower than the control rats. Compared with the control rats,  ND-fed DM rats had increased phosphorylation of acetyl CoA carboxylase and higher expressions of CD-36, carnitine palmitoyltransferase-1β, tumor necrosis factor-α, interleukin-1β, interleukin6, PERK, and e-IF2α as well as more myocardial fibrosis and apoptosis (assessed by Bcl-2, BAX, and caspase-3 expression); these increases were attenuated in the KD-fed DM rats. Moreover, ND-fed DM rats had significantly lower myocardial adenosine triphosphate, BHB, and OXCT1 levels than the control and KD-fed DM rats. The KD may improve the condition of diabetic cardiomyopathy by suppressing FA metabolism, increasing ketone utilization, and decreasing endoplasmic reticulum stress and inflammation.
ISSN:0955-2863
1873-4847
DOI:10.1016/j.jnutbio.2022.109161