A three-dimensional model of the thermomechanical behavior of shape memory alloys
A new macro-scale model of shape memory alloys is developed within the framework of generalized standard materials with internal constraints [Moumni, Z., 1995. Sur la modélisation du changement de phase à l’état solide. Ph.D. Thesis, École Nationale Supérieure des Ponts et Chaussées]. It is shown th...
Saved in:
Published in | Journal of the mechanics and physics of solids Vol. 55; no. 11; pp. 2455 - 2490 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2007
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A new macro-scale model of shape memory alloys is developed within the framework of generalized standard materials with internal constraints [Moumni, Z., 1995. Sur la modélisation du changement de phase à l’état solide. Ph.D. Thesis, École Nationale Supérieure des Ponts et Chaussées]. It is shown that the introduction of two state variables: the martensite volume fraction and the martensite orientation strain tensor, is sufficient to account for several effects exhibited by SMAs subject to thermomechanical loading, namely: self-accommodation, orientation and reorientation or martensite, as well as superelasticity and one-way shape memory. These phenomena are simulated using the same set of constitutive equations and evolution laws. A simple procedure for identifying the parameters of the model is described in detail and a validation against experimental data is conducted. The model is then used to analyze a 3D SMA structure representing a superelastic stent. Cyclic loading and other pertaining phenomena like training and two-way shape memory are considered in the second part of this paper. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0022-5096 |
DOI: | 10.1016/j.jmps.2007.03.012 |