Predicting physical stability of ternary amorphous solid dispersions using specific mechanical energy in a hot melt extrusion process

[Display omitted] This study focuses on the relationship between drug dissolution properties, physical stability against recrystallization, and specific mechanical energy (SME) from a hot melt extrusion (HME) process of ternary amorphous solid dispersions (ASDs) containing indomethacin (IND), HPMC a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics Vol. 548; no. 1; pp. 571 - 585
Main Authors Hanada, Masataka, Jermain, Scott V., Lu, Xingyu, Su, Yongchao, Williams, Robert O.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 05.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] This study focuses on the relationship between drug dissolution properties, physical stability against recrystallization, and specific mechanical energy (SME) from a hot melt extrusion (HME) process of ternary amorphous solid dispersions (ASDs) containing indomethacin (IND), HPMC and mesoporous silica (XDP) prepared using different HME screw condition (the number of kneading zones/rotation speed). The screw condition greatly influenced the amorphous characteristics of the processed material and SME values. The higher SME samples demonstrated a larger parachute effect in dissolution test and reduced the rate of recrystallization upon exposure to elevated temperature/humidity conditions, which can be explained from the enhanced miscibility and interactions of IND/HPMC/XDP. The molecular investigation by solid-state NMR (ssNMR) suggested that higher SME input produced better IND/HPMC miscibility and interaction. Interestingly, XDP showed distinct contacts with IND and HPMC in the high-SME samples. The IND-HPMC interaction is not sufficient to maintain a highly mixed ASD at a high drug load without the assistance of XDP. Therefore, SME is a critical parameter for predicting enhanced dissolution and physical stability of IND in ASDs. Moreover, multi-nuclear and multi-dimensional ssNMR provide mechanistic understanding of molecular properties and bring new perspectives for preparation, analysis, and applications of XDP as a pharmaceutical carrier.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2018.07.029