Whole-Cell PVA Cryogel-Immobilized Microbial Consortium LE-C1 for Xanthan Depolymerization
Xanthan is an extracellular heteropolysaccharide produced by the bacteria Xanthomonas campestris. Due to its unique properties, the polysaccharide and its derivatives are widely used in many industries, from food to biomedicine and oil production, that demands an efficient xanthan depolymerization m...
Saved in:
Published in | Catalysts Vol. 13; no. 9; p. 1249 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Xanthan is an extracellular heteropolysaccharide produced by the bacteria Xanthomonas campestris. Due to its unique properties, the polysaccharide and its derivatives are widely used in many industries, from food to biomedicine and oil production, that demands an efficient xanthan depolymerization method to adapt this polysaccharide for various applications. Unlike the known chemical approaches, biological methods are considered to be more environmentally friendly and less energy intensive. In laboratory conditions, we have isolated a bacterial community capable of reducing the xanthan viscosity. Identification of the individual isolates in the microbial community and their testing resulted in the consortium LE-C1, consisting of two microorganisms Paenibacillus phytohabitans KG5 and Cellulosimicrobium cellulans KG3. The specific activities of the overall xanthanase and auxiliary enzymes that may be involved in the xanthan depolymerization were as follows: xanthanase, 19.6 ± 0.6 U/g; β-glucosidase, 3.4 ± 0.1 U/g; α-mannosidase, 68.0 ± 2.0 U/g; β-mannosidase, 0.40 ± 0.01 U/g; endo-glucanase, 4.0 ± 0.1 U/g; and xanthan lyase, 2.20 ± 0.07 U/mg. In order to increase the efficiency of xanthan biodegradation, the LE-C1 whole cells were immobilized in a poly(vinyl alcohol) cryogel. The resulting regenerative biocatalyst was able to complete xanthan depolymerization within 40 cycles without loss of activity or degradation of the matrix. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal13091249 |