One-pot strategy to fabricate conductive cellulose nanocrystal-polyethylenedioxythiophene nanocomposite: Synthesis mechanism, modulated morphologies and sensor assembly

Simple preparation, good conductivity, and excellent hydrophilicity are in urgent demand due to fast growth of wearable intelligent devices. Cellulose nanocrystal-polyethylenedioxythiophene (CNC-PEDOT) nanocomposites with modulated morphology were prepared through Iron (III) p-toluenesulfonate hydro...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 311; p. 120758
Main Authors Tang, Dongping, Abdalkarim, Somia Yassin Hussain, Dong, Yanjuan, Yu, Hou-Yong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Simple preparation, good conductivity, and excellent hydrophilicity are in urgent demand due to fast growth of wearable intelligent devices. Cellulose nanocrystal-polyethylenedioxythiophene (CNC-PEDOT) nanocomposites with modulated morphology were prepared through Iron (III) p-toluenesulfonate hydrolysis of commercialized microcrystalline cellulose (MCC) and in situ polymerization of 3,4-ethylenedioxythiophene monomers (EDOT) through one-pot green synthesis, where preparation and modification of CNC were obtained for uses as templates to anchor PEDOT nanoparticles. The resultant CNC-PEDOT nanocomposite gave well-dispersed PEDOT nanoparticles with sheet-like structure on the CNC surface, possessing higher conductivity and improved hydrophilicity or dispersibility. Subsequently, a wearable non-woven fabrics (NWF) sensor was successfully assembled by dipping the conductive CNC-PEDOT, and showed excellent sensing response for multiple signals (subtle deformation from various human activities and temperature). This study provides a feasible and large-scale production of CNC-PEDOT nanocomposites and their applications in wearable flexible sensors and electronic devices. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2023.120758