Tectorigenin attenuates the OGD/R-induced HT-22 cell damage through regulation of the PI3K/AKT and the PPARγ/NF-κB pathways
Tectorigenin (TEC) is an effective compound that derived from many plants, such as Iris unguicularis, Belamcanda chinensis and Pueraria thunbergiana Benth. Evidence suggested that TEC has anti-tumor, anti-oxidant activity, anti-bacterial and anti-inflammatory effects. In addition, there has some evi...
Saved in:
Published in | Human & experimental toxicology Vol. 40; no. 8; pp. 1320 - 1331 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.08.2021
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Tectorigenin (TEC) is an effective compound that derived from many plants, such as Iris unguicularis, Belamcanda chinensis and Pueraria thunbergiana Benth. Evidence suggested that TEC has anti-tumor, anti-oxidant activity, anti-bacterial and anti-inflammatory effects. In addition, there has some evidence indicated that TEC is a potential anti-stroke compound; however, its specific roles and associated mechanism have not yet been elucidated. In the present study, we aimed to investigate the anti-inflammatory, anti-oxidant activity and anti-apoptosis effects of TEC on oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT-22 cells, and clarified the relevant mechanisms. Here, we observed that TEC significantly promoted cell survival, impeded cell apoptosis, inhibited ROS and inflammatory cytokines IL-1β, IL-6, TNF-α production in OGD/R-induced HT-22 cells. Moreover, TEC activated PI3K/AKT signal pathway, increased PPARγ expression and inhibited NF-κB pathway activation in OGD/R-induced HT-22 cells. Further studies indicated that PPARγ inhibitor GW9662 activated NF-κB pathway after TEC treatment in OGD/R-induced HT-22 cells. Also, PI3K/AKT inhibitor LY294002, PPARγ inhibitor GW9662 and NF-κB activator LPS both reversed the effects of TEC on OGD/R-induced HT-22 cell biology. Taken together, this research confirmed that TEC benefit to HT-22 cell survival and against OGD/R damage through the PI3K/AKT and PPARγ/NF-κB pathways. These results indicated that TEC might be an effective compound in the treatment for ischemic brain injury. |
---|---|
ISSN: | 0960-3271 1477-0903 |
DOI: | 10.1177/0960327121993213 |