Visualizing graphene edges using tip-enhanced Raman spectroscopy

The edges of a single layer graphene (SLG) flake play important roles in determining the electronic transport properties of graphene devices. Accurate determination of the phase-breaking lengths (Lσ) near the edges remains to be a significant challenge for near field optical measurements. This artic...

Full description

Saved in:
Bibliographic Details
Published inJournal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Vol. 31; no. 4
Main Authors Su, Weitao, Roy, Debdulal
Format Journal Article
LanguageEnglish
Published 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The edges of a single layer graphene (SLG) flake play important roles in determining the electronic transport properties of graphene devices. Accurate determination of the phase-breaking lengths (Lσ) near the edges remains to be a significant challenge for near field optical measurements. This article presents an image of graphene edges using high resolution tip-enhanced Raman spectroscopy (TERS) of mechanically exfoliated SLG and reports the value of Lσ (4.2 ± 0.5 nm). The current near-field measurements verify the theoretical value of Lσ and highlight the potential of TERS in characterizing graphene at the nanoscale.
AbstractList The edges of a single layer graphene (SLG) flake play important roles in determining the electronic transport properties of graphene devices. Accurate determination of the phase-breaking lengths (Lσ) near the edges remains to be a significant challenge for near field optical measurements. This article presents an image of graphene edges using high resolution tip-enhanced Raman spectroscopy (TERS) of mechanically exfoliated SLG and reports the value of Lσ (4.2 ± 0.5 nm). The current near-field measurements verify the theoretical value of Lσ and highlight the potential of TERS in characterizing graphene at the nanoscale.
The edges of a single layer graphene (SLG) flake play important roles in determining the electronic transport properties of graphene devices. Accurate determination of the phase-breaking lengths (Lσ) near the edges remains to be a significant challenge for near field optical measurements. This article presents an image of graphene edges using high resolution tip-enhanced Raman spectroscopy (TERS) of mechanically exfoliated SLG and reports the value of Lσ (4.2 ± 0.5 nm). The current near-field measurements verify the theoretical value of Lσ and highlight the potential of TERS in characterizing graphene at the nanoscale.
Author Roy, Debdulal
Su, Weitao
Author_xml – sequence: 1
  givenname: Weitao
  surname: Su
  fullname: Su, Weitao
  organization: Institute of Materials Physics, Hangzhou Dianzi University, 310018, Hangzhou, China
– sequence: 2
  givenname: Debdulal
  surname: Roy
  fullname: Roy, Debdulal
  email: Debdulal.Roy@npl.co.uk
  organization: National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
BookMark eNqdkFFLwzAUhYNMcM49-A_6qtAtt2lukzdlOBUGgqivJU3SLbKlJemE-evt2EQQnzwvFw7fORfOORn4xltCLoFOAACnMMkFMJGLEzIEntFUcCwGZJgBYpoVOZ6RcYzvtBcKThkdkps3F7dq7T6dXybLoNqV9TaxZmljso17s3Ntav1KeW1N8qw2yiextboLTdRNu7sgp7VaRzs-3hF5nd-9zB7SxdP94-x2kWqGvEs5UzK3xgi0kmayFlpmTFMDKCWtjZAVw7zgyDGvVQHCZErLylSVRKwQkI3I9NCr-8cx2LrUrlOda3wXlFuXQMv9BiWUxw36xNWvRBvcRoXdn-z1gY3frf-DP5rwA5atqdkXezp5kw
CODEN JVTBD9
CitedBy_id crossref_primary_10_1146_annurev_matsci_070115_032140
crossref_primary_10_1039_C7CS00209B
crossref_primary_10_1088_0957_0233_27_9_092001
crossref_primary_10_1088_0957_4484_26_17_175702
crossref_primary_10_1364_OE_25_018378
crossref_primary_10_1021_acsami_9b22144
crossref_primary_10_1002_jrs_5211
crossref_primary_10_1002_jrs_6344
crossref_primary_10_1063_5_0222228
crossref_primary_10_1039_D1CC01769A
crossref_primary_10_1002_jrs_4968
crossref_primary_10_1016_j_clay_2020_105949
crossref_primary_10_1021_acsnano_5b01794
crossref_primary_10_1039_C6CC01990K
crossref_primary_10_1016_j_carbon_2024_118801
crossref_primary_10_1021_acsnano_1c02204
crossref_primary_10_1021_nn5031803
crossref_primary_10_1063_5_0021560
crossref_primary_10_1021_nn504993e
crossref_primary_10_1016_j_carbon_2016_09_068
crossref_primary_10_1021_acs_analchem_3c00272
crossref_primary_10_1088_0953_8984_27_8_083002
crossref_primary_10_1039_D4CS00588K
crossref_primary_10_1038_s41467_018_05307_0
crossref_primary_10_1021_acsanm_7b00083
crossref_primary_10_1039_C5NR07378B
crossref_primary_10_1063_1_4905128
crossref_primary_10_1039_C5NR04664E
crossref_primary_10_1140_epjti_s40485_015_0019_5
crossref_primary_10_1103_PhysRevLett_113_186101
crossref_primary_10_3390_s150921239
crossref_primary_10_1063_1_4869184
crossref_primary_10_1063_1_5080255
crossref_primary_10_1039_C4NR07441F
crossref_primary_10_1021_acs_jpcc_7b12068
crossref_primary_10_1063_1_4953578
crossref_primary_10_1103_PhysRevX_4_031054
crossref_primary_10_1016_j_trac_2016_02_024
crossref_primary_10_1007_s00216_018_1392_0
crossref_primary_10_1007_s11082_021_03051_2
crossref_primary_10_1021_acs_jpcc_7b03965
crossref_primary_10_1039_C5FD00050E
crossref_primary_10_1016_j_measurement_2019_107087
crossref_primary_10_1002_adom_201800528
crossref_primary_10_1002_cctc_201801023
crossref_primary_10_1007_s12647_013_0092_7
crossref_primary_10_1021_acs_nanolett_4c02826
crossref_primary_10_1021_acs_jpcc_1c08064
crossref_primary_10_1366_15_08014
crossref_primary_10_1021_acs_nanolett_6b00533
crossref_primary_10_1002_jrs_6374
crossref_primary_10_1002_jrs_6336
crossref_primary_10_1016_j_carbon_2015_08_020
crossref_primary_10_1021_acsnano_5b06631
Cites_doi 10.1126/science.1184289
10.1021/jp8008404
10.1021/nl102824h
10.1021/nl201370m
10.1021/nl8032697
10.1103/PhysRevLett.97.187401
10.1038/nphys1991
10.1038/nnano.2007.300
10.1103/PhysRevB.83.245435
10.1021/nl102423m
10.1143/JPSJ.76.033702
10.1038/nnano.2009.474
10.1007/s12030-008-9015-z
10.1063/1.3005599
10.1021/nl201432g
10.1126/science.1204428
10.1021/nn8003636
10.1016/j.ssc.2007.04.024
10.3938/jkps.60.1278
10.1002/jrs.2366
10.1103/PhysRevLett.97.016801
10.1021/nl301774e
10.1002/lpor.200910039
10.1021/nl0731872
10.1126/science.1102896
10.1016/j.mee.2011.02.046
10.1063/1.3043426
10.1103/PhysRevB.54.17954
10.1021/nl102526s
10.1038/nature07719
10.1016/j.physrep.2009.02.003
10.1021/nl104134a
10.1021/nn2035523
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
DBID AAYXX
CITATION
DOI 10.1116/1.4813848
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1520-8567
2166-2754
ExternalDocumentID 10_1116_1_4813848
GroupedDBID .DC
29L
5-Q
5GY
AAAAW
AAEUA
ABFTF
ABJNI
ACBRY
ADLOM
AENEX
AGTJO
AI.
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BAUXJ
H~9
M43
M71
M73
RAW
RIP
RNS
ROL
RQS
VAS
VH1
WH7
XFK
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABNAN
ACGFS
ADMLS
AFHCQ
AGKCL
AGVCI
CITATION
EBS
EJD
ID FETCH-LOGICAL-c365t-53a94edd86e9029f8c923c0d16990fd89b364756564fa718d2ac9bdbb966b6163
ISSN 2166-2746
IngestDate Tue Jul 01 02:43:37 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Fri Jun 21 00:16:46 EDT 2024
Sun Jul 14 10:25:54 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords glass
silver
graphene
Language English
License 2166-2746/2013/31(4)/041808/6
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-53a94edd86e9029f8c923c0d16990fd89b364756564fa718d2ac9bdbb966b6163
PageCount 6
ParticipantIDs scitation_primary_10_1116_1_4813848
crossref_citationtrail_10_1116_1_4813848
crossref_primary_10_1116_1_4813848
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130700
2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 20130700
PublicationDecade 2010
PublicationTitle Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
PublicationYear 2013
References Sasaki, Jiang, Saito, Onari, Tanaka (c12) 2007; 76
Tao (c14) 2011; 7
Avouris, Chen, Perebeinos (c13) 2007; 2
Barros, Sato, Samsonidze, Souza Filho, Dresselhaus, Saito (c23) 2011; 83
You, Ni, Yu, Shen (c25) 2008; 93
Stadler, Thomas, Zenobi (c32) 2011; 5
Cancado, Beams, Novotny (c15) 2011; 11
Morozov, Novoselov, Katsnelson, Schedin, Ponomarenko, Jiang, Geim (c18) 2006; 97
Wang, Ni, Yu, Shen, Wang, Wu, Chen, Wee (c33) 2008; 112
Tzalenchuk (c5) 2010; 5
Gupta, Russin, Gutiérrez, Eklund (c19) 2009; 3
Neacsu, Berweger, Raschke (c28) 2007; 3
Fang, Liu, Wang, Ajayan, Nordlander, Halas (c4) 2012; 12
Lin (c3) 2011; 332
Verma, Ichimura, Yano, Saito, Kawata (c27) 2010; 4
Abanin, Lee, Levitov (c10) 2007; 143
Yoon, Cheong, Choi, Park (c35) 2012; 60
Cancado (c21) 2011; 11
Nakada, Fujita, Dresselhaus, Dresselhaus (c11) 1996; 54
Giesbers, Rietveld, Houtzager, Zeitler, Yang, Novoselov, Geim, Maan (c6) 2008; 93
Lin, Dimitrakopoulos, Jenkins, Farmer, Chiu, Grill, Avouris (c2) 2010; 327
Krauss, Nemes-Incze, Skakalova, Biro, Klitzing, Smet (c24) 2010; 10
Casiraghi, Hartschuh, Qian, Piscanec, Georgi, Fasoli, Novoselov, Basko, Ferrari (c17) 2009; 9
Carozo, Almeida, Ferreira, Cancado, Achete, Jorio (c34) 2011; 11
Snitka, Rodrigues, Lendraitis (c31) 2011; 88
Kim (c9) 2009; 457
Saito, Verma, Masui, Inouye, Kawata (c30) 2009; 40
Avouris (c7) 2010; 10
Beams, Cancado, Novotny (c16) 2011; 11
Malard, Pimenta, Dresselhaus, Dresselhaus (c26) 2009; 473
Stadler, Schmid, Zenobi (c29) 2010; 10
Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Lau (c8) 2008; 8
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (c1) 2004; 306
Ferrari (c20) 2006; 97
(2023070921221321500_c21) 2011; 11
(2023070921221321500_c3) 2011; 332
(2023070921221321500_c10) 2007; 143
(2023070921221321500_c34) 2011; 11
(2023070921221321500_c5) 2010; 5
(2023070921221321500_c4) 2012; 12
(2023070921221321500_c9) 2009; 457
(2023070921221321500_c13) 2007; 2
(2023070921221321500_c12) 2007; 76
(2023070921221321500_c2) 2010; 327
(2023070921221321500_c29) 2010; 10
(2023070921221321500_c31) 2011; 88
(2023070921221321500_c1) 2004; 306
(2023070921221321500_c7) 2010; 10
(2023070921221321500_c25) 2008; 93
(2023070921221321500_c6) 2008; 93
(2023070921221321500_c18) 2006; 97
(2023070921221321500_c23) 2011; 83
(2023070921221321500_c30) 2009; 40
(2023070921221321500_c16) 2011; 11
(2023070921221321500_c27) 2010; 4
(2023070921221321500_c24) 2010; 10
(2023070921221321500_c17) 2009; 9
(2023070921221321500_c14) 2011; 7
(2023070921221321500_c11) 1996; 54
(2023070921221321500_c32) 2011; 5
(2023070921221321500_c8) 2008; 8
(2023070921221321500_c35) 2012; 60
(2023070921221321500_c33) 2008; 112
(2023070921221321500_c20) 2006; 97
(2023070921221321500_c26) 2009; 473
(2023070921221321500_c15) 2011; 11
(2023070921221321500_c19) 2009; 3
(2023070921221321500_c22) 2011
(2023070921221321500_c28) 2007; 3
References_xml – volume: 93
  start-page: 222109
  year: 2008
  ident: c6
  publication-title: Appl. Phys. Lett.
– volume: 83
  start-page: 245435
  year: 2011
  ident: c23
  publication-title: Phys. Rev. B
– volume: 60
  start-page: 1278
  year: 2012
  ident: c35
  publication-title: J. Korean Phys. Soc.
– volume: 306
  start-page: 666
  year: 2004
  ident: c1
  publication-title: Science
– volume: 473
  start-page: 51
  year: 2009
  ident: c26
  publication-title: Phys. Rep.
– volume: 143
  start-page: 77
  year: 2007
  ident: c10
  publication-title: Solid State Commun.
– volume: 93
  start-page: 163112
  year: 2008
  ident: c25
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 616
  year: 2011
  ident: c14
  publication-title: Nat. Phys.
– volume: 5
  start-page: 8442
  year: 2011
  ident: c32
  publication-title: ACS Nano
– volume: 457
  start-page: 706
  year: 2009
  ident: c9
  publication-title: Nature
– volume: 10
  start-page: 4544
  year: 2010
  ident: c24
  publication-title: Nano Lett.
– volume: 10
  start-page: 4285
  year: 2010
  ident: c7
  publication-title: Nano Lett.
– volume: 11
  start-page: 1177
  year: 2011
  ident: c16
  publication-title: Nano Lett.
– volume: 5
  start-page: 186
  year: 2010
  ident: c5
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 4527
  year: 2011
  ident: c34
  publication-title: Nano Lett.
– volume: 40
  start-page: 1434
  year: 2009
  ident: c30
  publication-title: J. Raman Spectrosc.
– volume: 332
  start-page: 1294
  year: 2011
  ident: c3
  publication-title: Science
– volume: 3
  start-page: 172
  year: 2007
  ident: c28
  publication-title: NanoBiotechnology
– volume: 12
  start-page: 3808
  year: 2012
  ident: c4
  publication-title: Nano Lett.
– volume: 8
  start-page: 902
  year: 2008
  ident: c8
  publication-title: Nano Lett.
– volume: 97
  start-page: 016801
  year: 2006
  ident: c18
  publication-title: Phys. Rev. Lett.
– volume: 54
  start-page: 17954
  year: 1996
  ident: c11
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 548
  year: 2010
  ident: c27
  publication-title: Laser Photonics Rev.
– volume: 76
  start-page: 033702
  year: 2007
  ident: c12
  publication-title: J. Phys. Soc. Jpn.
– volume: 10
  start-page: 4514
  year: 2010
  ident: c29
  publication-title: Nano Lett.
– volume: 88
  start-page: 2759
  year: 2011
  ident: c31
  publication-title: Microelectron. Eng.
– volume: 2
  start-page: 605
  year: 2007
  ident: c13
  publication-title: Nat. Nanotechnol.
– volume: 97
  start-page: 187401
  year: 2006
  ident: c20
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 1433
  year: 2009
  ident: c17
  publication-title: Nano Lett.
– volume: 3
  start-page: 45
  year: 2009
  ident: c19
  publication-title: ACS Nano
– volume: 327
  start-page: 662
  year: 2010
  ident: c2
  publication-title: Science
– volume: 11
  start-page: 3190
  year: 2011
  ident: c21
  publication-title: Nano Lett.
– volume: 112
  start-page: 10637
  year: 2008
  ident: c33
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 3190
  year: 2011
  ident: c15
  publication-title: Nano Letters
– volume: 327
  start-page: 662
  year: 2010
  ident: 2023070921221321500_c2
  publication-title: Science
  doi: 10.1126/science.1184289
– volume: 112
  start-page: 10637
  year: 2008
  ident: 2023070921221321500_c33
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8008404
– volume: 10
  start-page: 4285
  year: 2010
  ident: 2023070921221321500_c7
  publication-title: Nano Lett.
  doi: 10.1021/nl102824h
– volume: 11
  start-page: 4527
  year: 2011
  ident: 2023070921221321500_c34
  publication-title: Nano Lett.
  doi: 10.1021/nl201370m
– volume: 9
  start-page: 1433
  year: 2009
  ident: 2023070921221321500_c17
  publication-title: Nano Lett.
  doi: 10.1021/nl8032697
– volume: 97
  start-page: 187401
  year: 2006
  ident: 2023070921221321500_c20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 7
  start-page: 616
  year: 2011
  ident: 2023070921221321500_c14
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1991
– volume: 2
  start-page: 605
  year: 2007
  ident: 2023070921221321500_c13
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.300
– volume: 83
  start-page: 245435
  year: 2011
  ident: 2023070921221321500_c23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.245435
– volume: 10
  start-page: 4514
  year: 2010
  ident: 2023070921221321500_c29
  publication-title: Nano Lett.
  doi: 10.1021/nl102423m
– volume: 76
  start-page: 033702
  year: 2007
  ident: 2023070921221321500_c12
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.76.033702
– volume: 5
  start-page: 186
  year: 2010
  ident: 2023070921221321500_c5
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.474
– volume: 3
  start-page: 172
  year: 2007
  ident: 2023070921221321500_c28
  publication-title: NanoBiotechnology
  doi: 10.1007/s12030-008-9015-z
– volume: 93
  start-page: 163112
  year: 2008
  ident: 2023070921221321500_c25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3005599
– volume: 11
  start-page: 3190
  year: 2011
  ident: 2023070921221321500_c21
  publication-title: Nano Lett.
  doi: 10.1021/nl201432g
– volume: 332
  start-page: 1294
  year: 2011
  ident: 2023070921221321500_c3
  publication-title: Science
  doi: 10.1126/science.1204428
– volume: 3
  start-page: 45
  year: 2009
  ident: 2023070921221321500_c19
  publication-title: ACS Nano
  doi: 10.1021/nn8003636
– volume: 143
  start-page: 77
  year: 2007
  ident: 2023070921221321500_c10
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2007.04.024
– volume: 60
  start-page: 1278
  year: 2012
  ident: 2023070921221321500_c35
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.60.1278
– volume: 40
  start-page: 1434
  year: 2009
  ident: 2023070921221321500_c30
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2366
– volume: 11
  start-page: 3190
  year: 2011
  ident: 2023070921221321500_c15
  publication-title: Nano Letters
  doi: 10.1021/nl201432g
– volume: 97
  start-page: 016801
  year: 2006
  ident: 2023070921221321500_c18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.016801
– volume: 12
  start-page: 3808
  year: 2012
  ident: 2023070921221321500_c4
  publication-title: Nano Lett.
  doi: 10.1021/nl301774e
– volume: 4
  start-page: 548
  year: 2010
  ident: 2023070921221321500_c27
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.200910039
– volume: 8
  start-page: 902
  year: 2008
  ident: 2023070921221321500_c8
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 306
  start-page: 666
  year: 2004
  ident: 2023070921221321500_c1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume-title: Raman Spectrum in Graphene Related Systems
  year: 2011
  ident: 2023070921221321500_c22
– volume: 88
  start-page: 2759
  year: 2011
  ident: 2023070921221321500_c31
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2011.02.046
– volume: 93
  start-page: 222109
  year: 2008
  ident: 2023070921221321500_c6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3043426
– volume: 54
  start-page: 17954
  year: 1996
  ident: 2023070921221321500_c11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.17954
– volume: 10
  start-page: 4544
  year: 2010
  ident: 2023070921221321500_c24
  publication-title: Nano Lett.
  doi: 10.1021/nl102526s
– volume: 457
  start-page: 706
  year: 2009
  ident: 2023070921221321500_c9
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 473
  start-page: 51
  year: 2009
  ident: 2023070921221321500_c26
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.02.003
– volume: 11
  start-page: 1177
  year: 2011
  ident: 2023070921221321500_c16
  publication-title: Nano Lett.
  doi: 10.1021/nl104134a
– volume: 5
  start-page: 8442
  year: 2011
  ident: 2023070921221321500_c32
  publication-title: ACS Nano
  doi: 10.1021/nn2035523
SSID ssj0000685030
ssj0006533
Score 2.3203936
Snippet The edges of a single layer graphene (SLG) flake play important roles in determining the electronic transport properties of graphene devices. Accurate...
The edges of a single layer graphene (SLG) flake play important roles in determining the electronic transport properties of graphene devices. Accurate...
SourceID crossref
scitation
SourceType Enrichment Source
Index Database
Publisher
Title Visualizing graphene edges using tip-enhanced Raman spectroscopy
URI http://dx.doi.org/10.1116/1.4813848
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gA9oPIS5SULOCBFG_ycrm-0PFShlgNtUW_WviwitXHU2pXor2d2vV5voEgtFytareNk5svkm9l5EPI2V0hzQQBVimU0h0RTnnBOtwUHUfJUJsoUJx98g73j_OtJcTKZ7AdZS10rZvLq2rqS_9EqrqFeTZXsLTTr3xQX8DXqF6-oYbzeSMc_5hemJvLKuPu28zQarqm2bRs6GwNo50uqFz_7U_7v3MTrbWmlaWHZLFdOdANmesll151Nh4ofm2PpI_Cz6a6zys24aAF0ZnL7xrE6nqwfdjaRT89b3oznO7-ctVPdqfuaLvZg5kBsD7EHa6LSBICiX-uaWYdrfWvowcZmSYCl_B-m20YRZjlLMtZ331xtj_3H35ZPJuzdGKiSyt16h6yn6DSg1Vvf-XSwf-hjbjGwIrbjZ_wHd82m8P73_tErFOUuCrtPigh4x9Emue_UEu302n9AJnrxkGwEbSQfkQ8BDqIBB5HFQWRxEIU4iCwOohAHj8nxl89HH_eom4xBZQZFS4uMl7nGnxfoMk7Lmknk6TJWCSC5qBUrhRkLYLh6XnNkHyrlshRKCHRuBSAFf0LWFs1CPyWRiHkqGENHOZY511nJCqnBDJOCuhYAW-TdIIxqkISZXnJa_SX3LfLab132vVKu2_TGS_SWuy6b83FHtVT1s5s88Dm5N0L3BVlrzzv9EolkK145fPwGVwxzmw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualizing+graphene+edges+using+tip-enhanced+Raman+spectroscopy&rft.jtitle=Journal+of+vacuum+science+and+technology.+B%2C+Nanotechnology+%26+microelectronics&rft.au=Su%2C+Weitao&rft.au=Roy%2C+Debdulal&rft.date=2013-07-01&rft.issn=2166-2746&rft.eissn=2166-2754&rft.volume=31&rft.issue=4&rft_id=info:doi/10.1116%2F1.4813848&rft.externalDBID=n%2Fa&rft.externalDocID=10_1116_1_4813848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2166-2746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2166-2746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2166-2746&client=summon