Characterization of 9-nitrocamptothecin-in-cyclodextrin-in-liposomes modified with transferrin for the treating of tumor

[Display omitted] Encapsulation of hydrophobic drugs in the form of drug-cyclodextrin (CD) complex in liposomes has been applied as a novel strategy to combine the relative advantages of CDs and liposomes into one system, naming drug-in-CD-in-liposome (DCL). In the present study, soluble 9-NC/hydrox...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics Vol. 490; no. 1-2; pp. 219 - 228
Main Authors Chen, Jun, Lu, Shanshan, Gu, Wei, Peng, Pei, Dong, Jie, Xu, Fei, Yang, Xueqin, Xiong, Zheyun, Yang, Xixiong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 25.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Encapsulation of hydrophobic drugs in the form of drug-cyclodextrin (CD) complex in liposomes has been applied as a novel strategy to combine the relative advantages of CDs and liposomes into one system, naming drug-in-CD-in-liposome (DCL). In the present study, soluble 9-NC/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complexes were prepared using the freeze-drying technique. Then 9-NC inclusion complexes were further encapsulated into liposomes by ethanol injection method and transferrin (Tf) was conjugated to the surface of 9-NC DCL to obtain Tf modified 9-NC DCL (Tf-9-NC-CL). Compared to PEGylated 9-NC DCL (P-9-NC-CL), the lactone stability and vesicle stability of Tf-9-NC-CL were significantly increased. Both 9-NC and HP-β-CD were found to release from the DCL and Tf modification resulted in reduced release of them. The enhanced targeting efficiency of the Tf-modified liposomes was demonstrated by flow cytometry and confocal microscopy. In vivo pharmacokinetics in rats showed improved lactone stability of 9-NC following intravenous injection of Tf-9-NC-CL. The cytotoxicity of Tf-9-NC-CL against tumor cells and normal cells was investigated in vitro and the antitumor efficacy was evaluated in S180 tumor-bearing mice in vivo. Compared with free 9-NC, 9-NC inclusion complexes and P-9-NC-CL, Tf-9-NC-CL demonstrated the strongest cytotoxicity to tumor cells. And the inhibitory rate of tumor (IRT) values were determined to be 43.08%, 56.92%, 67.69% and 80.00% for 9-NC solution, inclusion complexes, P-9-NC-CL and Tf-9-NC-CL, respectively. In conclusion, Tf modification can be useful in increasing vesicle stability, targeting drug delivery efficiency and antitumor efficacy of DCL containing hydrophobic antitumor drugs, such as 9-NC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2015.05.047