Synthesis of nano-cuboidal gold particles for effective antimicrobial property against clinical human pathogens
Algae could offer a potential source of fine chemicals, pharmaceuticals and biofuels. In this study, a green synthesis of dispersed cuboidal gold nanoparticles (AuNPs) was achieved using red algae, Gelidium amansii reacted with HAuCl4. It was found to be 4–7 nm sized cubical nanoparticles with aspec...
Saved in:
Published in | Microbial pathogenesis Vol. 113; pp. 68 - 73 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Algae could offer a potential source of fine chemicals, pharmaceuticals and biofuels. In this study, a green synthesis of dispersed cuboidal gold nanoparticles (AuNPs) was achieved using red algae, Gelidium amansii reacted with HAuCl4. It was found to be 4–7 nm sized cubical nanoparticles with aspect ratio of 1.4 were synthesized using 0.5 mM of HAuCl4 by HRSEM analysis. The crystalline planes (111), (200), (220), (311) and elemental signal of gold was observed by XRD and EDS respectively. The major constitutes, galactose and 3,6-anhydrogalactose in the alga played a critical role in the synthesis of crystalline AuNPs with cubical dimension. Further, the antibacterial potential of synthesized AuNPs was tested against human pathogens, Escherichia coli and Staphylococcus aureus. The synthesized AuNPs found biocompatible up to 100 ppm and high concentration showed an inhibition against cancer cell. This novel report could be helped to exploration of bioresources to material synthesis for the application of biosensor and biomedical application.
[Display omitted]
•Rapid and one pot synthesis of AuNPs using alga.•Synthesis of nano-cuboidal structures and well defined characterization.•AuNPs exhibits antimicrobial and anti-cancer property with biocompatible limits. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0882-4010 1096-1208 |
DOI: | 10.1016/j.micpath.2017.10.032 |