Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation

In this work, the design, modeling, and development of a low-cost lower limb exoskeleton (LLES) system are presented for paediatric rehabilitation (age: 8-12 years, mass: 25-40 kg, height: 115-125 cm). The exoskeleton system, having three degrees-of-freedom (DOFs) for each limb, is designed in the S...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Vol. 235; no. 5; p. 530
Main Authors Narayan, Jyotindra, Kumar Dwivedy, Santosha
Format Journal Article
LanguageEnglish
Published England 01.05.2021
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:In this work, the design, modeling, and development of a low-cost lower limb exoskeleton (LLES) system are presented for paediatric rehabilitation (age: 8-12 years, mass: 25-40 kg, height: 115-125 cm). The exoskeleton system, having three degrees-of-freedom (DOFs) for each limb, is designed in the SolidWorks software. A wheel support module is introduced in the design to ensure the user's stability and safety. The finite element analysis of the hip joint connector along with the wheel support module is realized for maximum loading conditions. The holding torque capacity of exoskeleton joints is estimated using an affordable spring-based experimental setup. A working prototype of the LLES is developed with holding torque rated actuators. Thereafter, the dynamic analysis for the human-exoskeleton coupled system is carried out using the Euler-Lagrange principle and SimMechanics model. The simulation results of estimating joint actuator torques are obtained for two paraplegic subjects (Case I: 10 years age, 30 kg mass, 120 cm height and Case II: 12 years age, 40 kg mass, 125 cm height). The details of input parameters such as body mass, link lengths, joint angles, and contact forces are discussed. The simulation results of dynamic analysis have shown the potential of estimating the torques of joint actuators for the developed prototype during motion assistance and gait rehabilitation.
ISSN:2041-3033
DOI:10.1177/0954411921994940