Microstructure, Mechanical and Tribological Properties of High-Entropy Carbide (MoNbTaTiV)C5

High-entropy carbide (NbTaTiV)C4 (HEC4), (MoNbTaTiV)C5 (HEC5), and (MoNbTaTiV)C5-SiC (HEC5S) multiphase ceramics were prepared by spark plasma sintering (SPS) at 1900 to 2100 °C, using metal carbide and silicon carbide (SiC) as raw materials. Their microstructure, and mechanical and tribological pro...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 16; no. 11; p. 4115
Main Authors Zhang, Shubo, Qin, Falian, Gong, Maoyuan, Wu, Zihao, Liu, Meiling, Chen, Yuhong, Hai, Wanxiu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 31.05.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-entropy carbide (NbTaTiV)C4 (HEC4), (MoNbTaTiV)C5 (HEC5), and (MoNbTaTiV)C5-SiC (HEC5S) multiphase ceramics were prepared by spark plasma sintering (SPS) at 1900 to 2100 °C, using metal carbide and silicon carbide (SiC) as raw materials. Their microstructure, and mechanical and tribological properties were investigated. The results showed that the (MoNbTaTiV)C5 synthesized at 1900–2100 °C had a face-centered cubic structure and density higher than 95.6%. The increase in sintering temperature was conducive to the promotion of densification, growth of grains, and diffusion of metal elements. The introduction of SiC helped to promote densification but weakened the strength of the grain boundaries. The average specific wear rates for HEC4 were within an order of magnitude of 10−5 mm3/N·m, and for HEC5 and HEC5S were within a range of 10−7 to 10−6 mm3/N·m. The wear mechanism of HEC4 was abrasion, while that of HEC5 and HEC5S was mainly oxidation wear.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16114115