VIP and PHM and their role in nonadrenergic inhibitory responses in isolated human airways
There is increasing evidence in many species that vasoactive intestinal peptide (VIP) may be a neurotransmitter in nonadrenergic inhibitory nerves. We have studied the effect of electrical field stimulation (EFS), exogenous VIP, and isoproterenol (Iso) on human airways in vitro. We have also studied...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 61; no. 4; p. 1322 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.10.1986
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | There is increasing evidence in many species that vasoactive intestinal peptide (VIP) may be a neurotransmitter in nonadrenergic inhibitory nerves. We have studied the effect of electrical field stimulation (EFS), exogenous VIP, and isoproterenol (Iso) on human airways in vitro. We have also studied a related peptide, peptide histidine methionine (PHM), which coexists with VIP in human airway nerves, and in separate experiments studied fragments of the VIP amino acid sequence (VIP1-10 and VIP16-28) for agonist and antagonist activity. Human airways were obtained at thoracotomy and studied in an organ bath. In bronchi EFS gave an inhibitory response that was unaltered by 10(-6) M propranolol but was blocked by tetrodotoxin, whereas in bronchioles there was little or no nonadrenergic inhibitory response. VIP, PHM, and Iso all caused dose-dependent relaxation of bronchi, VIP and PHM being approximately 50-fold more potent than Iso. VIP, but not Iso, mimicked the time course of nonadrenergic inhibitory nerve stimulation. In contrast bronchioles relaxed to Iso but not to VIP or PHM. Neither propranolol nor indomethacin altered the relaxant effects of VIP or PHM, suggesting a direct effect of these peptides on airway smooth muscle. Neither of the VIP fragments showed either agonist or antagonist activity. We conclude that VIP and PHM are more potent bronchodilators of human bronchi than Iso and that the association between the relaxant effects of these peptides and nonadrenergic inhibitory responses suggests that they may be possible neurotransmitters of nonadrenergic inhibitory nerves in human airways. |
---|---|
ISSN: | 8750-7587 |
DOI: | 10.1152/jappl.1986.61.4.1322 |