Nitriding of Ti substrate using energetic ions from plasma focus device

Plasma Focus (PF) discharge is a pulsed plasma producing discharge that generates high temperature and high density plasma for a short duration. PF devices are known to emit intense ion beams pulses of characteristic energy in the keV to a few MeV range, in a time scale of tens of nanoseconds. We ha...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 370; no. 1; pp. 12010 - 4
Main Authors Henriquez, A, Bhuyan, H, Favre, M, Bora, B, Wyndham, E, Chuaqui, H, Mändl, S, Gerlach, J W, Manova, D
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.01.2012
Subjects
Online AccessGet full text
ISSN1742-6596
1742-6588
1742-6596
DOI10.1088/1742-6596/370/1/012010

Cover

More Information
Summary:Plasma Focus (PF) discharge is a pulsed plasma producing discharge that generates high temperature and high density plasma for a short duration. PF devices are known to emit intense ion beams pulses of characteristic energy in the keV to a few MeV range, in a time scale of tens of nanoseconds. We have previously investigated the ion flux and energy spectrum of ion beams emitted from a low energy PF, operating at 20 kV, with 1.8 kJ stored energy. It was observed that the ion beams have wide range of energy and intensity spectra with a clear angular anisotropy. Due to the wide range of ion energy and intensity spectra PF has become a subject of current interest for its applications in material sciences including surface modification and thin film deposition. The purpose of this study is the formation of titanium nitride (TiN) thin film and to investigate the structural properties of the TiN thin films in terms of PF angular positions. Substrates like Ti and Ti/Si were nitrided in a 1.8 kJ PF device at different angular positions with respect to the PF axis in order to correlate their surface properties with ion beam parameters. Preliminary characterizations of the ion implanted substrates have been conducted, using SEM, EDX and XRD. Our results indicate the formation of nanocrystalline TiN thin film only in certain angular positions. Angular dependency of the surface morphology was observed, which shows that the surface features strongly depends on ion beam energy and flux. With increasing angular positions, a reduction in the deposition rate and the sputter rate is observed. A pronounced nanostructured surface is only observed at the axis of the pinched plasma column, indicating the dominant role of sputtering and perhaps melting and fast re-crystallization of the surface in creating the nanostructures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1742-6596
1742-6588
1742-6596
DOI:10.1088/1742-6596/370/1/012010