Quantum phase transitions in the LMG model by means of quantum information concepts
Quantum phase transitions are currently studied in several fields of physics, as examples one finds: in nuclear physics the shape phase transitions within the Interacting Boson Model; in quantum optics two level atoms interacting with a one mode electromagnetic radiation in a cavity; and in condense...
Saved in:
Published in | Journal of physics. Conference series Vol. 387; no. 1; pp. 12021 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.01.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Quantum phase transitions are currently studied in several fields of physics, as examples one finds: in nuclear physics the shape phase transitions within the Interacting Boson Model; in quantum optics two level atoms interacting with a one mode electromagnetic radiation in a cavity; and in condensed matter in the analysis of the behavior of spin systems. In this contribution we employ the fidelity and its susceptibility, two concepts widely used in quantum information theory, to determine the quantum phase transitions of the Lipkin-Meshkov-Glick (LMG) model together with its scaling properties. By means of these concepts, we propose a quantum method to determine the crossings and anti-crossings present in a model Hamiltonian as a function of the control parameters of the model. A review of the separatrix of the LMG model is done to compare the results obtained by means of quantum information concepts with those related with the singular behavior of the energy surface of the model, which is the expectation value of the Hamiltonian with respect to spin coherent states. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/387/1/012021 |