High-Electron-Mobility InN Layers Grown by Boundary-Temperature-Controlled Epitaxy

A boundary-temperature-controlled epitaxy, where the growth temperature of InN is controlled at its maximum, is used to obtain high-electron-mobility InN layers on sapphire substrates by molecular beam epitaxy. The Hall-effect measurement shows a recorded electron mobility of 3280 cm 2 V -1 s -1 and...

Full description

Saved in:
Bibliographic Details
Published inApplied physics express Vol. 5; no. 1; pp. 015502 - 015502-3
Main Authors Wang, Xinqiang, Liu, Shitao, Ma, Nan, Feng, Li, Chen, Guang, Xu, Fujun, Tang, Ning, Huang, Sen, Chen, Kevin J, Zhou, Shengqiang, Shen, Bo
Format Journal Article
LanguageEnglish
Published The Japan Society of Applied Physics 01.01.2012
Online AccessGet full text

Cover

Loading…
Abstract A boundary-temperature-controlled epitaxy, where the growth temperature of InN is controlled at its maximum, is used to obtain high-electron-mobility InN layers on sapphire substrates by molecular beam epitaxy. The Hall-effect measurement shows a recorded electron mobility of 3280 cm 2 V -1 s -1 and a residual electron concentration of $1.47\times 10^{17}$ cm -3 at room temperature. The enhanced electron mobility and reduced residual electron concentration are mainly due to the reduction of threading dislocation density. The obtained Hall mobilities are in good agreement with the theoretical modelling by the ensemble Monte Carlo simulation.
AbstractList A boundary-temperature-controlled epitaxy, where the growth temperature of InN is controlled at its maximum, is used to obtain high-electron-mobility InN layers on sapphire substrates by molecular beam epitaxy. The Hall-effect measurement shows a recorded electron mobility of 3280 cm 2 V -1 s -1 and a residual electron concentration of $1.47\times 10^{17}$ cm -3 at room temperature. The enhanced electron mobility and reduced residual electron concentration are mainly due to the reduction of threading dislocation density. The obtained Hall mobilities are in good agreement with the theoretical modelling by the ensemble Monte Carlo simulation.
Author Ma, Nan
Wang, Xinqiang
Chen, Guang
Feng, Li
Zhou, Shengqiang
Huang, Sen
Liu, Shitao
Tang, Ning
Shen, Bo
Xu, Fujun
Chen, Kevin J
Author_xml – sequence: 1
  givenname: Xinqiang
  surname: Wang
  fullname: Wang, Xinqiang
  organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
– sequence: 2
  givenname: Shitao
  surname: Liu
  fullname: Liu, Shitao
  organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Nan
  surname: Ma
  fullname: Ma, Nan
  organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
– sequence: 4
  givenname: Li
  surname: Feng
  fullname: Feng, Li
  organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
– sequence: 5
  givenname: Guang
  surname: Chen
  fullname: Chen, Guang
  organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
– sequence: 6
  givenname: Fujun
  surname: Xu
  fullname: Xu, Fujun
  organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
– sequence: 7
  givenname: Ning
  surname: Tang
  fullname: Tang, Ning
  organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
– sequence: 8
  givenname: Sen
  surname: Huang
  fullname: Huang, Sen
  organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
– sequence: 9
  givenname: Kevin J
  surname: Chen
  fullname: Chen, Kevin J
  organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
– sequence: 10
  givenname: Shengqiang
  surname: Zhou
  fullname: Zhou, Shengqiang
  organization: Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01314 Dresden, Germany
– sequence: 11
  givenname: Bo
  surname: Shen
  fullname: Shen, Bo
  organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
BookMark eNqFkL1PwzAQxS1UJNrCyJ6VwcWOY8cZSxTaSuFDqEhskWM7YJTakZMK8t-TKIgBCTHdDe93995bgJl1VgNwidEK44hcrx-zlxVdIUwpCk_AHHMeQhRzNvvZY34GFm37jhCLCGZz8LQ1r28wq7XsvLPwzpWmNl0f7Ox9kIte-zbYePdhg7IPbtzRKuF7uNeHRnvRHb2GqbMDWddaBVljOvHZn4PTStStvvieS_B8m-3TLcwfNrt0nUNJWNTBRCOWIMUkpxGjlWJlzBSNJFIlpiXTCUZIlJUKOWVUSExFrEMiWViFRCQUkyWA013pXdt6XRWNN4fBX4FRMRZSjIUUtJgKGfTkl14OfjszBhCm_pO6mijTiOafD1_PfHMl
CitedBy_id crossref_primary_10_1063_1_4776210
crossref_primary_10_1063_1_4926966
crossref_primary_10_1039_C6CP03199D
crossref_primary_10_1002_pssa_201532778
crossref_primary_10_1016_j_jcrysgro_2015_04_019
crossref_primary_10_1016_j_jcrysgro_2013_08_038
crossref_primary_10_1063_1_5092826
crossref_primary_10_1063_1_4792699
crossref_primary_10_1002_crat_202400124
crossref_primary_10_1063_1_4952380
crossref_primary_10_1063_5_0029138
crossref_primary_10_1063_1_4789373
crossref_primary_10_7567_JJAP_52_08JD06
crossref_primary_10_1016_j_spmi_2018_06_026
crossref_primary_10_1063_1_5054155
crossref_primary_10_1063_1_4959777
crossref_primary_10_1063_1_4824823
crossref_primary_10_1063_1_4871975
crossref_primary_10_1088_1361_6641_ac06e4
crossref_primary_10_1002_pssb_201451628
crossref_primary_10_1016_j_jcrysgro_2015_07_024
crossref_primary_10_7498_aps_62_117802
crossref_primary_10_1002_pssb_201700320
crossref_primary_10_1063_1_4793190
crossref_primary_10_1016_j_apsusc_2022_153150
crossref_primary_10_1155_2016_9435387
crossref_primary_10_1016_j_tsf_2023_139961
crossref_primary_10_1063_5_0228747
crossref_primary_10_1002_pssa_201329345
crossref_primary_10_1021_acsnano_1c09636
crossref_primary_10_1021_acs_nanolett_5b04726
crossref_primary_10_1063_1_4732141
crossref_primary_10_1364_OE_24_015059
crossref_primary_10_1134_S1063782616020159
crossref_primary_10_1063_1_4913626
crossref_primary_10_1109_LPT_2019_2936272
crossref_primary_10_1116_1_4813687
crossref_primary_10_1016_j_apmt_2022_101489
crossref_primary_10_1063_1_5009794
crossref_primary_10_1063_1_4789983
crossref_primary_10_1016_j_spmi_2017_11_053
crossref_primary_10_1063_1_4859615
crossref_primary_10_1063_1_5008903
crossref_primary_10_1002_admi_202200105
crossref_primary_10_1007_s11182_014_0131_z
crossref_primary_10_1016_j_pquantelec_2015_11_001
crossref_primary_10_1149_2162_8777_ac4d80
crossref_primary_10_3390_cryst7090268
crossref_primary_10_1038_srep03951
crossref_primary_10_1016_j_mssp_2016_11_006
crossref_primary_10_1016_j_mssp_2017_07_025
crossref_primary_10_1063_1_4961876
crossref_primary_10_1063_1_4985128
crossref_primary_10_1063_1_4772625
crossref_primary_10_1016_j_apsusc_2017_02_042
crossref_primary_10_1038_srep04371
crossref_primary_10_1063_1_4964422
crossref_primary_10_1007_s11434_014_0161_5
crossref_primary_10_1016_j_fmre_2021_09_020
crossref_primary_10_1063_1_5017153
crossref_primary_10_1063_1_5022844
crossref_primary_10_1007_s40242_016_5506_y
crossref_primary_10_1063_1_4948446
crossref_primary_10_1039_C4RA02533D
crossref_primary_10_2472_jsms_70_732
crossref_primary_10_1063_1_4775736
crossref_primary_10_1149_2_0212001JSS
crossref_primary_10_35848_1882_0786_ac4449
crossref_primary_10_7567_JJAP_55_05FD12
crossref_primary_10_1088_0256_307X_31_7_077202
crossref_primary_10_1103_PhysRevMaterials_2_011601
crossref_primary_10_1088_1361_6641_acb80e
crossref_primary_10_1134_S1063782619100038
crossref_primary_10_1063_1_4857535
crossref_primary_10_3390_s18072065
Cites_doi 10.1063/1.3658626
10.1143/JJAP.42.2549
10.1063/1.3319557
10.1103/PhysRevB.84.075315
10.1103/PhysRevLett.96.125505
10.1143/JJAP.45.L730
10.1143/APEX.2.051001
10.1063/1.3065030
10.1016/j.jcrysgro.2008.12.016
10.1103/PhysRevB.76.045206
10.1063/1.2190720
10.1002/1521-3951(200202)229:33.0.CO;2-O
10.1063/1.2335685
10.1063/1.3592257
10.1063/1.2364456
10.1016/j.spmi.2004.03.069
10.1063/1.2917473
10.1063/1.2720717
10.1103/PhysRevLett.92.036804
10.1063/1.2234274
10.1016/j.pcrysgrow.2005.03.002
10.1063/1.2214156
10.1063/1.2722693
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1143/APEX.5.015502
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1882-0786
EndPage 015502-3
ExternalDocumentID 10_1143_APEX_5_015502
GroupedDBID 23M
4.4
5GY
AAGCD
AAGID
AAJIO
AALHV
AAPBV
ABEFU
ACGFS
ACNCT
AEFHF
AENEX
AFYNE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
B.R
CJUJL
CS3
EBS
EJD
IIPPG
IOP
IZVLO
KOT
LI
MC8
N5L
P2P
QTG
RIN
RNS
ROL
RW3
SJN
UPT
X
XFK
ZE2
-~X
6OB
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABVAM
ACHIP
ADIYS
ADWVK
AERVB
AFFNX
AI.
AKPSB
AOAED
CEBXE
CITATION
CRLBU
GROUPED_DOAJ
IJHAN
JCGBZ
O3W
PJBAE
RPA
VH1
ZOHVM
ID FETCH-LOGICAL-c364t-9e0690d6c85465fd6b76d54c0db15b6e9100abfd28565ac15a7e23c62f23a9513
ISSN 1882-0778
IngestDate Thu Apr 24 23:11:03 EDT 2025
Tue Jul 01 02:56:03 EDT 2025
Mon Jan 18 10:57:31 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c364t-9e0690d6c85465fd6b76d54c0db15b6e9100abfd28565ac15a7e23c62f23a9513
Notes Growth rate of InN as a function of growth temperature. Schematic of boundary-temperature-controlled epitaxy is shown in the inset, where the thermocouple temperature is decreased step by step from 500--480 °C. (a) Directly measured Hall mobility (diamonds) and residual electron concentration (circles) of InN layers as functions of layer thickness. Lines serve as guides for the eyes. (b) Temperature-dependent mobilities and electron concentrations, where the solid squares are directly measured values and the solid triangles are extracted values for the InN bulk layer. The temperature-dependent mobility calculated by EMC is shown by the solid line. The fitting line for the temperature-dependent electron concentration in the bulk layer is shown in the inset by the solid line. Calculated low-field electron mobility in InN as a function of ionized impurity concentration at different dislocation density ($N_{\text{dis}}$ in the figure) levels. The experimental results are shown by the bigger open diamonds. FWHMs of $\omega$-rocking curves of (002) symmetric and (102) asymmetric planes of InN layers.
ParticipantIDs crossref_primary_10_1143_APEX_5_015502
crossref_citationtrail_10_1143_APEX_5_015502
ipap_primary_10_1143_APEX_5_015502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied physics express
PublicationYear 2012
Publisher The Japan Society of Applied Physics
Publisher_xml – name: The Japan Society of Applied Physics
References K. Wang, Y. Cao, J. Simon, J. Zhang, A. Mintairov, J. Merz, D. Hall, T. Kosel, and D. Jena: Appl. Phys. Lett. 89 (2006) 162110.
X. Wang and A. Yoshikawa: Prog. Cryst. Growth Charact. Mater. 48--49 (2004) 42.
L. F. Piper, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 88 (2006) 252109.
N. Ma, X. Q. Wang, S. T. Liu, L. Feng, G. Chen, F. J. Xu, N. Tang, L. W. Lu, and B. Shen: Appl. Phys. Lett. 99 (2011) 182107.
X. Wang, S.-B. Che, Y. Ishitani, and A. Yoshikawa: J. Appl. Phys. 99 (2006) 073512.
N. Ma, X. Q. Wang, S. T. Liu, G. Chen, J. H. Pan, L. Feng, F. J. Xu, N. Tang, and B. Shen: Appl. Phys. Lett. 98 (2011) 192114.
G. Koblmuller, C. S. Gallinat, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, and M. Wraback: Appl. Phys. Lett. 89 (2006) 071902.
N. Miller, E. E. Haller, G. Koblmuller, C. Gallinat, J. S. Speck, W. J. Schaff, M. E. Hawkridge, K. M. Yu, and J. W. Ager III: Phys. Rev. B 84 (2011) 075315.
V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul: Phys. Status Solidi B 229 (2002) R1.
I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff: Phys. Rev. Lett. 92 (2004) 036804.
J. Wu and W. Walukiewicz: Superlattices Microstruct. 34 (2003) 63.
R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff: Phys. Rev. Lett. 96 (2006) 125506.
C. S. Gallinat, G. Koblmüller, J. S. Brown, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, and M. Wraback: Appl. Phys. Lett. 89 (2006) 032109.
X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa: Jpn. J. Appl. Phys. 45 (2006) L730.
C. S. Gallinat, G. Koblmuller, F. Wu, and J. S. Speck: J. Appl. Phys. 107 (2010) 053517.
X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa: Appl. Phys. Lett. 90 (2007) 151901.
T. Yamaguchi and Y. Nanishi: Appl. Phys. Express 2 (2009) 051001.
Y. Nanishi, Y. Saito, and T. Yamaguchi: Jpn. J. Appl. Phys. 42 (2003) 2549.
A. Yoshikawa, S. Che, Y. Ishitani, and X. Wang: J. Cryst. Growth 311 (2009) 2073.
N. Khan, A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang: Appl. Phys. Lett. 92 (2008) 172101.
R. E. Jones, S. X. Li, E. E. Haller, H. C. M. van Genuchten, K. M. Yu, J. W. Ager III, Z. L. Weber, W. Walukiewicz, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 90 (2007) 162103.
V. Darakchieva, T. Hofmann, M. Schubert, B. E. Sernelius, B. Monemar, P. O. A. Persson, F. Giuliani, E. Alves, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 94 (2009) 022109.
Y. Ishitani, T. Ohira, X. Wang, S. Che, and A. Yoshikawa: Phys. Rev. B 76 (2007) 045206.
Jones (APEX-5-015502-21) 2006; 96
Jones (APEX-5-015502-11) 2007; 90
Miller (APEX-5-015502-5) 2011; 84
Khan (APEX-5-015502-14) 2008; 92
Wu (APEX-5-015502-1) 2003; 34
Wang (APEX-5-015502-12) 2007; 90
Ishitani (APEX-5-015502-19) 2007; 76
Ma (APEX-5-015502-22) 2011; 98
Gallinat (APEX-5-015502-9) 2006; 89
Darakchieva (APEX-5-015502-13) 2009; 94
Piper (APEX-5-015502-7) 2006; 88
Nanishi (APEX-5-015502-4) 2003; 42
Gallinat (APEX-5-015502-15) 2010; 107
Wang (APEX-5-015502-2) 2004; 48--49
Ma (APEX-5-015502-20) 2011; 99
Davydov (APEX-5-015502-3) 2002; 229
Yamaguchi (APEX-5-015502-17) 2009; 2
Koblmuller (APEX-5-015502-6) 2006; 89
Wang (APEX-5-015502-8) 2006; 99
Wang (APEX-5-015502-10) 2006; 45
Mahboob (APEX-5-015502-18) 2004; 92
Wang (APEX-5-015502-23) 2006; 89
Yoshikawa (APEX-5-015502-16) 2009; 311
References_xml – reference: R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff: Phys. Rev. Lett. 96 (2006) 125506.
– reference: N. Ma, X. Q. Wang, S. T. Liu, L. Feng, G. Chen, F. J. Xu, N. Tang, L. W. Lu, and B. Shen: Appl. Phys. Lett. 99 (2011) 182107.
– reference: A. Yoshikawa, S. Che, Y. Ishitani, and X. Wang: J. Cryst. Growth 311 (2009) 2073.
– reference: N. Khan, A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang: Appl. Phys. Lett. 92 (2008) 172101.
– reference: X. Wang, S.-B. Che, Y. Ishitani, and A. Yoshikawa: J. Appl. Phys. 99 (2006) 073512.
– reference: T. Yamaguchi and Y. Nanishi: Appl. Phys. Express 2 (2009) 051001.
– reference: Y. Ishitani, T. Ohira, X. Wang, S. Che, and A. Yoshikawa: Phys. Rev. B 76 (2007) 045206.
– reference: V. Darakchieva, T. Hofmann, M. Schubert, B. E. Sernelius, B. Monemar, P. O. A. Persson, F. Giuliani, E. Alves, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 94 (2009) 022109.
– reference: Y. Nanishi, Y. Saito, and T. Yamaguchi: Jpn. J. Appl. Phys. 42 (2003) 2549.
– reference: V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul: Phys. Status Solidi B 229 (2002) R1.
– reference: X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa: Jpn. J. Appl. Phys. 45 (2006) L730.
– reference: C. S. Gallinat, G. Koblmuller, F. Wu, and J. S. Speck: J. Appl. Phys. 107 (2010) 053517.
– reference: R. E. Jones, S. X. Li, E. E. Haller, H. C. M. van Genuchten, K. M. Yu, J. W. Ager III, Z. L. Weber, W. Walukiewicz, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 90 (2007) 162103.
– reference: I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff: Phys. Rev. Lett. 92 (2004) 036804.
– reference: N. Ma, X. Q. Wang, S. T. Liu, G. Chen, J. H. Pan, L. Feng, F. J. Xu, N. Tang, and B. Shen: Appl. Phys. Lett. 98 (2011) 192114.
– reference: X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa: Appl. Phys. Lett. 90 (2007) 151901.
– reference: N. Miller, E. E. Haller, G. Koblmuller, C. Gallinat, J. S. Speck, W. J. Schaff, M. E. Hawkridge, K. M. Yu, and J. W. Ager III: Phys. Rev. B 84 (2011) 075315.
– reference: G. Koblmuller, C. S. Gallinat, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, and M. Wraback: Appl. Phys. Lett. 89 (2006) 071902.
– reference: J. Wu and W. Walukiewicz: Superlattices Microstruct. 34 (2003) 63.
– reference: L. F. Piper, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 88 (2006) 252109.
– reference: K. Wang, Y. Cao, J. Simon, J. Zhang, A. Mintairov, J. Merz, D. Hall, T. Kosel, and D. Jena: Appl. Phys. Lett. 89 (2006) 162110.
– reference: X. Wang and A. Yoshikawa: Prog. Cryst. Growth Charact. Mater. 48--49 (2004) 42.
– reference: C. S. Gallinat, G. Koblmüller, J. S. Brown, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, and M. Wraback: Appl. Phys. Lett. 89 (2006) 032109.
– volume: 99
  start-page: 182107
  year: 2011
  ident: APEX-5-015502-20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3658626
– volume: 42
  start-page: 2549
  year: 2003
  ident: APEX-5-015502-4
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.42.2549
– volume: 107
  start-page: 053517
  year: 2010
  ident: APEX-5-015502-15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3319557
– volume: 84
  start-page: 075315
  year: 2011
  ident: APEX-5-015502-5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.075315
– volume: 96
  start-page: 125506
  year: 2006
  ident: APEX-5-015502-21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.125505
– volume: 45
  start-page: L730
  year: 2006
  ident: APEX-5-015502-10
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.45.L730
– volume: 2
  start-page: 051001
  year: 2009
  ident: APEX-5-015502-17
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.2.051001
– volume: 94
  start-page: 022109
  year: 2009
  ident: APEX-5-015502-13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3065030
– volume: 311
  start-page: 2073
  year: 2009
  ident: APEX-5-015502-16
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2008.12.016
– volume: 76
  start-page: 045206
  year: 2007
  ident: APEX-5-015502-19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.045206
– volume: 99
  start-page: 073512
  year: 2006
  ident: APEX-5-015502-8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2190720
– volume: 229
  start-page: R1
  year: 2002
  ident: APEX-5-015502-3
  publication-title: Phys. Status Solidi B
  doi: 10.1002/1521-3951(200202)229:33.0.CO;2-O
– volume: 89
  start-page: 071902
  year: 2006
  ident: APEX-5-015502-6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2335685
– volume: 98
  start-page: 192114
  year: 2011
  ident: APEX-5-015502-22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3592257
– volume: 89
  start-page: 162110
  year: 2006
  ident: APEX-5-015502-23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2364456
– volume: 34
  start-page: 63
  year: 2003
  ident: APEX-5-015502-1
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2004.03.069
– volume: 92
  start-page: 172101
  year: 2008
  ident: APEX-5-015502-14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2917473
– volume: 90
  start-page: 151901
  year: 2007
  ident: APEX-5-015502-12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2720717
– volume: 92
  start-page: 036804
  year: 2004
  ident: APEX-5-015502-18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.036804
– volume: 89
  start-page: 032109
  year: 2006
  ident: APEX-5-015502-9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2234274
– volume: 48--49
  start-page: 42
  year: 2004
  ident: APEX-5-015502-2
  publication-title: Prog. Cryst. Growth Charact. Mater.
  doi: 10.1016/j.pcrysgrow.2005.03.002
– volume: 88
  start-page: 252109
  year: 2006
  ident: APEX-5-015502-7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2214156
– volume: 90
  start-page: 162103
  year: 2007
  ident: APEX-5-015502-11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2722693
SSID ssj0064316
Score 2.2720132
Snippet A boundary-temperature-controlled epitaxy, where the growth temperature of InN is controlled at its maximum, is used to obtain high-electron-mobility InN...
SourceID crossref
ipap
SourceType Enrichment Source
Index Database
Publisher
StartPage 015502
Title High-Electron-Mobility InN Layers Grown by Boundary-Temperature-Controlled Epitaxy
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELdGJyRe0NhAfGwomhAvwyV1Ert5ZFURmviopiL1LbIdByqhtEAR6_567uwk_aBjwEsUWbar5n69_Hy9-x0he4Y1VWy0onEaSRrKBtwBsaCcicyXXPtcYkD_7JyfXIa_elFvrrpkpOr678K6kvdYFcbArlgl-wbLVpvCANyDfeEKFobrq2yMSRq0XTSyoWcDm-g6ht_8-Y9TiVwaQ0uPOVLMn7Z90t2Ydg0QZSekTFsuT_0GSGcbu4f8mfmPtySoLvhxj80AqnwNG4J3bqLXz28BY1dVak__wYZUr2HDwSTgXbjyCfV0q0_703EHm8BRxh2cq0Ru7gvXgKdupscKcevCv0bPYOR8JR6O2GIvHlo1iU67V0dR1XLerFr23Fusyi10ldZBgsuTKHHLl8hHBucIW-F50Slf1Rx1APBEXn6VUoQ1DA5nPn2GtNT6QzmcIiHdT2S1OD14Rw4Ka-SDyT-T5Y4z0BfyezEgPACE5wDhWUB4auz9BxBeAYh1cnnc7rZOaNE0g-qAhyMaG9SeTrluYpv7LOVK8DQKtZ-qRqS4AXroS5WlrAlUXupGJIVhgeYsY4EEuh1skFo-yM0m8YQR0s8Ea2ggzXEgmxL2jpjQsVCoUbRFDsqnkuhCUR4bm9wkC22wRfar6UMnpfKvid_xEb88afu1u-2QlQl8v5La6O7BfAMiOVK7FgxPGShuug
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Electron-Mobility+InN+Layers+Grown+by+Boundary-Temperature-Controlled+Epitaxy&rft.jtitle=Applied+physics+express&rft.au=Wang%2C+Xinqiang&rft.au=Liu%2C+Shitao&rft.au=Ma%2C+Nan&rft.au=Feng%2C+Li&rft.date=2012-01-01&rft.issn=1882-0778&rft.eissn=1882-0786&rft.volume=5&rft.issue=1&rft.spage=15502&rft_id=info:doi/10.1143%2FAPEX.5.015502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1143_APEX_5_015502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-0778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-0778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-0778&client=summon