High-Electron-Mobility InN Layers Grown by Boundary-Temperature-Controlled Epitaxy
A boundary-temperature-controlled epitaxy, where the growth temperature of InN is controlled at its maximum, is used to obtain high-electron-mobility InN layers on sapphire substrates by molecular beam epitaxy. The Hall-effect measurement shows a recorded electron mobility of 3280 cm 2 V -1 s -1 and...
Saved in:
Published in | Applied physics express Vol. 5; no. 1; pp. 015502 - 015502-3 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
The Japan Society of Applied Physics
01.01.2012
|
Online Access | Get full text |
Cover
Loading…
Abstract | A boundary-temperature-controlled epitaxy, where the growth temperature of InN is controlled at its maximum, is used to obtain high-electron-mobility InN layers on sapphire substrates by molecular beam epitaxy. The Hall-effect measurement shows a recorded electron mobility of 3280 cm 2 V -1 s -1 and a residual electron concentration of $1.47\times 10^{17}$ cm -3 at room temperature. The enhanced electron mobility and reduced residual electron concentration are mainly due to the reduction of threading dislocation density. The obtained Hall mobilities are in good agreement with the theoretical modelling by the ensemble Monte Carlo simulation. |
---|---|
AbstractList | A boundary-temperature-controlled epitaxy, where the growth temperature of InN is controlled at its maximum, is used to obtain high-electron-mobility InN layers on sapphire substrates by molecular beam epitaxy. The Hall-effect measurement shows a recorded electron mobility of 3280 cm 2 V -1 s -1 and a residual electron concentration of $1.47\times 10^{17}$ cm -3 at room temperature. The enhanced electron mobility and reduced residual electron concentration are mainly due to the reduction of threading dislocation density. The obtained Hall mobilities are in good agreement with the theoretical modelling by the ensemble Monte Carlo simulation. |
Author | Ma, Nan Wang, Xinqiang Chen, Guang Feng, Li Zhou, Shengqiang Huang, Sen Liu, Shitao Tang, Ning Shen, Bo Xu, Fujun Chen, Kevin J |
Author_xml | – sequence: 1 givenname: Xinqiang surname: Wang fullname: Wang, Xinqiang organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China – sequence: 2 givenname: Shitao surname: Liu fullname: Liu, Shitao organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China – sequence: 3 givenname: Nan surname: Ma fullname: Ma, Nan organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China – sequence: 4 givenname: Li surname: Feng fullname: Feng, Li organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China – sequence: 5 givenname: Guang surname: Chen fullname: Chen, Guang organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China – sequence: 6 givenname: Fujun surname: Xu fullname: Xu, Fujun organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China – sequence: 7 givenname: Ning surname: Tang fullname: Tang, Ning organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China – sequence: 8 givenname: Sen surname: Huang fullname: Huang, Sen organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China – sequence: 9 givenname: Kevin J surname: Chen fullname: Chen, Kevin J organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China – sequence: 10 givenname: Shengqiang surname: Zhou fullname: Zhou, Shengqiang organization: Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01314 Dresden, Germany – sequence: 11 givenname: Bo surname: Shen fullname: Shen, Bo organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China |
BookMark | eNqFkL1PwzAQxS1UJNrCyJ6VwcWOY8cZSxTaSuFDqEhskWM7YJTakZMK8t-TKIgBCTHdDe93995bgJl1VgNwidEK44hcrx-zlxVdIUwpCk_AHHMeQhRzNvvZY34GFm37jhCLCGZz8LQ1r28wq7XsvLPwzpWmNl0f7Ox9kIte-zbYePdhg7IPbtzRKuF7uNeHRnvRHb2GqbMDWddaBVljOvHZn4PTStStvvieS_B8m-3TLcwfNrt0nUNJWNTBRCOWIMUkpxGjlWJlzBSNJFIlpiXTCUZIlJUKOWVUSExFrEMiWViFRCQUkyWA013pXdt6XRWNN4fBX4FRMRZSjIUUtJgKGfTkl14OfjszBhCm_pO6mijTiOafD1_PfHMl |
CitedBy_id | crossref_primary_10_1063_1_4776210 crossref_primary_10_1063_1_4926966 crossref_primary_10_1039_C6CP03199D crossref_primary_10_1002_pssa_201532778 crossref_primary_10_1016_j_jcrysgro_2015_04_019 crossref_primary_10_1016_j_jcrysgro_2013_08_038 crossref_primary_10_1063_1_5092826 crossref_primary_10_1063_1_4792699 crossref_primary_10_1002_crat_202400124 crossref_primary_10_1063_1_4952380 crossref_primary_10_1063_5_0029138 crossref_primary_10_1063_1_4789373 crossref_primary_10_7567_JJAP_52_08JD06 crossref_primary_10_1016_j_spmi_2018_06_026 crossref_primary_10_1063_1_5054155 crossref_primary_10_1063_1_4959777 crossref_primary_10_1063_1_4824823 crossref_primary_10_1063_1_4871975 crossref_primary_10_1088_1361_6641_ac06e4 crossref_primary_10_1002_pssb_201451628 crossref_primary_10_1016_j_jcrysgro_2015_07_024 crossref_primary_10_7498_aps_62_117802 crossref_primary_10_1002_pssb_201700320 crossref_primary_10_1063_1_4793190 crossref_primary_10_1016_j_apsusc_2022_153150 crossref_primary_10_1155_2016_9435387 crossref_primary_10_1016_j_tsf_2023_139961 crossref_primary_10_1063_5_0228747 crossref_primary_10_1002_pssa_201329345 crossref_primary_10_1021_acsnano_1c09636 crossref_primary_10_1021_acs_nanolett_5b04726 crossref_primary_10_1063_1_4732141 crossref_primary_10_1364_OE_24_015059 crossref_primary_10_1134_S1063782616020159 crossref_primary_10_1063_1_4913626 crossref_primary_10_1109_LPT_2019_2936272 crossref_primary_10_1116_1_4813687 crossref_primary_10_1016_j_apmt_2022_101489 crossref_primary_10_1063_1_5009794 crossref_primary_10_1063_1_4789983 crossref_primary_10_1016_j_spmi_2017_11_053 crossref_primary_10_1063_1_4859615 crossref_primary_10_1063_1_5008903 crossref_primary_10_1002_admi_202200105 crossref_primary_10_1007_s11182_014_0131_z crossref_primary_10_1016_j_pquantelec_2015_11_001 crossref_primary_10_1149_2162_8777_ac4d80 crossref_primary_10_3390_cryst7090268 crossref_primary_10_1038_srep03951 crossref_primary_10_1016_j_mssp_2016_11_006 crossref_primary_10_1016_j_mssp_2017_07_025 crossref_primary_10_1063_1_4961876 crossref_primary_10_1063_1_4985128 crossref_primary_10_1063_1_4772625 crossref_primary_10_1016_j_apsusc_2017_02_042 crossref_primary_10_1038_srep04371 crossref_primary_10_1063_1_4964422 crossref_primary_10_1007_s11434_014_0161_5 crossref_primary_10_1016_j_fmre_2021_09_020 crossref_primary_10_1063_1_5017153 crossref_primary_10_1063_1_5022844 crossref_primary_10_1007_s40242_016_5506_y crossref_primary_10_1063_1_4948446 crossref_primary_10_1039_C4RA02533D crossref_primary_10_2472_jsms_70_732 crossref_primary_10_1063_1_4775736 crossref_primary_10_1149_2_0212001JSS crossref_primary_10_35848_1882_0786_ac4449 crossref_primary_10_7567_JJAP_55_05FD12 crossref_primary_10_1088_0256_307X_31_7_077202 crossref_primary_10_1103_PhysRevMaterials_2_011601 crossref_primary_10_1088_1361_6641_acb80e crossref_primary_10_1134_S1063782619100038 crossref_primary_10_1063_1_4857535 crossref_primary_10_3390_s18072065 |
Cites_doi | 10.1063/1.3658626 10.1143/JJAP.42.2549 10.1063/1.3319557 10.1103/PhysRevB.84.075315 10.1103/PhysRevLett.96.125505 10.1143/JJAP.45.L730 10.1143/APEX.2.051001 10.1063/1.3065030 10.1016/j.jcrysgro.2008.12.016 10.1103/PhysRevB.76.045206 10.1063/1.2190720 10.1002/1521-3951(200202)229:33.0.CO;2-O 10.1063/1.2335685 10.1063/1.3592257 10.1063/1.2364456 10.1016/j.spmi.2004.03.069 10.1063/1.2917473 10.1063/1.2720717 10.1103/PhysRevLett.92.036804 10.1063/1.2234274 10.1016/j.pcrysgrow.2005.03.002 10.1063/1.2214156 10.1063/1.2722693 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1143/APEX.5.015502 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1882-0786 |
EndPage | 015502-3 |
ExternalDocumentID | 10_1143_APEX_5_015502 |
GroupedDBID | 23M 4.4 5GY AAGCD AAGID AAJIO AALHV AAPBV ABEFU ACGFS ACNCT AEFHF AENEX AFYNE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN B.R CJUJL CS3 EBS EJD IIPPG IOP IZVLO KOT LI MC8 N5L P2P QTG RIN RNS ROL RW3 SJN UPT X XFK ZE2 -~X 6OB AATNI AAYXX ABCXL ABHWH ABJNI ABVAM ACHIP ADIYS ADWVK AERVB AFFNX AI. AKPSB AOAED CEBXE CITATION CRLBU GROUPED_DOAJ IJHAN JCGBZ O3W PJBAE RPA VH1 ZOHVM |
ID | FETCH-LOGICAL-c364t-9e0690d6c85465fd6b76d54c0db15b6e9100abfd28565ac15a7e23c62f23a9513 |
ISSN | 1882-0778 |
IngestDate | Thu Apr 24 23:11:03 EDT 2025 Tue Jul 01 02:56:03 EDT 2025 Mon Jan 18 10:57:31 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c364t-9e0690d6c85465fd6b76d54c0db15b6e9100abfd28565ac15a7e23c62f23a9513 |
Notes | Growth rate of InN as a function of growth temperature. Schematic of boundary-temperature-controlled epitaxy is shown in the inset, where the thermocouple temperature is decreased step by step from 500--480 °C. (a) Directly measured Hall mobility (diamonds) and residual electron concentration (circles) of InN layers as functions of layer thickness. Lines serve as guides for the eyes. (b) Temperature-dependent mobilities and electron concentrations, where the solid squares are directly measured values and the solid triangles are extracted values for the InN bulk layer. The temperature-dependent mobility calculated by EMC is shown by the solid line. The fitting line for the temperature-dependent electron concentration in the bulk layer is shown in the inset by the solid line. Calculated low-field electron mobility in InN as a function of ionized impurity concentration at different dislocation density ($N_{\text{dis}}$ in the figure) levels. The experimental results are shown by the bigger open diamonds. FWHMs of $\omega$-rocking curves of (002) symmetric and (102) asymmetric planes of InN layers. |
ParticipantIDs | crossref_primary_10_1143_APEX_5_015502 crossref_citationtrail_10_1143_APEX_5_015502 ipap_primary_10_1143_APEX_5_015502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied physics express |
PublicationYear | 2012 |
Publisher | The Japan Society of Applied Physics |
Publisher_xml | – name: The Japan Society of Applied Physics |
References | K. Wang, Y. Cao, J. Simon, J. Zhang, A. Mintairov, J. Merz, D. Hall, T. Kosel, and D. Jena: Appl. Phys. Lett. 89 (2006) 162110. X. Wang and A. Yoshikawa: Prog. Cryst. Growth Charact. Mater. 48--49 (2004) 42. L. F. Piper, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 88 (2006) 252109. N. Ma, X. Q. Wang, S. T. Liu, L. Feng, G. Chen, F. J. Xu, N. Tang, L. W. Lu, and B. Shen: Appl. Phys. Lett. 99 (2011) 182107. X. Wang, S.-B. Che, Y. Ishitani, and A. Yoshikawa: J. Appl. Phys. 99 (2006) 073512. N. Ma, X. Q. Wang, S. T. Liu, G. Chen, J. H. Pan, L. Feng, F. J. Xu, N. Tang, and B. Shen: Appl. Phys. Lett. 98 (2011) 192114. G. Koblmuller, C. S. Gallinat, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, and M. Wraback: Appl. Phys. Lett. 89 (2006) 071902. N. Miller, E. E. Haller, G. Koblmuller, C. Gallinat, J. S. Speck, W. J. Schaff, M. E. Hawkridge, K. M. Yu, and J. W. Ager III: Phys. Rev. B 84 (2011) 075315. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul: Phys. Status Solidi B 229 (2002) R1. I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff: Phys. Rev. Lett. 92 (2004) 036804. J. Wu and W. Walukiewicz: Superlattices Microstruct. 34 (2003) 63. R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff: Phys. Rev. Lett. 96 (2006) 125506. C. S. Gallinat, G. Koblmüller, J. S. Brown, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, and M. Wraback: Appl. Phys. Lett. 89 (2006) 032109. X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa: Jpn. J. Appl. Phys. 45 (2006) L730. C. S. Gallinat, G. Koblmuller, F. Wu, and J. S. Speck: J. Appl. Phys. 107 (2010) 053517. X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa: Appl. Phys. Lett. 90 (2007) 151901. T. Yamaguchi and Y. Nanishi: Appl. Phys. Express 2 (2009) 051001. Y. Nanishi, Y. Saito, and T. Yamaguchi: Jpn. J. Appl. Phys. 42 (2003) 2549. A. Yoshikawa, S. Che, Y. Ishitani, and X. Wang: J. Cryst. Growth 311 (2009) 2073. N. Khan, A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang: Appl. Phys. Lett. 92 (2008) 172101. R. E. Jones, S. X. Li, E. E. Haller, H. C. M. van Genuchten, K. M. Yu, J. W. Ager III, Z. L. Weber, W. Walukiewicz, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 90 (2007) 162103. V. Darakchieva, T. Hofmann, M. Schubert, B. E. Sernelius, B. Monemar, P. O. A. Persson, F. Giuliani, E. Alves, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 94 (2009) 022109. Y. Ishitani, T. Ohira, X. Wang, S. Che, and A. Yoshikawa: Phys. Rev. B 76 (2007) 045206. Jones (APEX-5-015502-21) 2006; 96 Jones (APEX-5-015502-11) 2007; 90 Miller (APEX-5-015502-5) 2011; 84 Khan (APEX-5-015502-14) 2008; 92 Wu (APEX-5-015502-1) 2003; 34 Wang (APEX-5-015502-12) 2007; 90 Ishitani (APEX-5-015502-19) 2007; 76 Ma (APEX-5-015502-22) 2011; 98 Gallinat (APEX-5-015502-9) 2006; 89 Darakchieva (APEX-5-015502-13) 2009; 94 Piper (APEX-5-015502-7) 2006; 88 Nanishi (APEX-5-015502-4) 2003; 42 Gallinat (APEX-5-015502-15) 2010; 107 Wang (APEX-5-015502-2) 2004; 48--49 Ma (APEX-5-015502-20) 2011; 99 Davydov (APEX-5-015502-3) 2002; 229 Yamaguchi (APEX-5-015502-17) 2009; 2 Koblmuller (APEX-5-015502-6) 2006; 89 Wang (APEX-5-015502-8) 2006; 99 Wang (APEX-5-015502-10) 2006; 45 Mahboob (APEX-5-015502-18) 2004; 92 Wang (APEX-5-015502-23) 2006; 89 Yoshikawa (APEX-5-015502-16) 2009; 311 |
References_xml | – reference: R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff: Phys. Rev. Lett. 96 (2006) 125506. – reference: N. Ma, X. Q. Wang, S. T. Liu, L. Feng, G. Chen, F. J. Xu, N. Tang, L. W. Lu, and B. Shen: Appl. Phys. Lett. 99 (2011) 182107. – reference: A. Yoshikawa, S. Che, Y. Ishitani, and X. Wang: J. Cryst. Growth 311 (2009) 2073. – reference: N. Khan, A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang: Appl. Phys. Lett. 92 (2008) 172101. – reference: X. Wang, S.-B. Che, Y. Ishitani, and A. Yoshikawa: J. Appl. Phys. 99 (2006) 073512. – reference: T. Yamaguchi and Y. Nanishi: Appl. Phys. Express 2 (2009) 051001. – reference: Y. Ishitani, T. Ohira, X. Wang, S. Che, and A. Yoshikawa: Phys. Rev. B 76 (2007) 045206. – reference: V. Darakchieva, T. Hofmann, M. Schubert, B. E. Sernelius, B. Monemar, P. O. A. Persson, F. Giuliani, E. Alves, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 94 (2009) 022109. – reference: Y. Nanishi, Y. Saito, and T. Yamaguchi: Jpn. J. Appl. Phys. 42 (2003) 2549. – reference: V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul: Phys. Status Solidi B 229 (2002) R1. – reference: X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa: Jpn. J. Appl. Phys. 45 (2006) L730. – reference: C. S. Gallinat, G. Koblmuller, F. Wu, and J. S. Speck: J. Appl. Phys. 107 (2010) 053517. – reference: R. E. Jones, S. X. Li, E. E. Haller, H. C. M. van Genuchten, K. M. Yu, J. W. Ager III, Z. L. Weber, W. Walukiewicz, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 90 (2007) 162103. – reference: I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff: Phys. Rev. Lett. 92 (2004) 036804. – reference: N. Ma, X. Q. Wang, S. T. Liu, G. Chen, J. H. Pan, L. Feng, F. J. Xu, N. Tang, and B. Shen: Appl. Phys. Lett. 98 (2011) 192114. – reference: X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa: Appl. Phys. Lett. 90 (2007) 151901. – reference: N. Miller, E. E. Haller, G. Koblmuller, C. Gallinat, J. S. Speck, W. J. Schaff, M. E. Hawkridge, K. M. Yu, and J. W. Ager III: Phys. Rev. B 84 (2011) 075315. – reference: G. Koblmuller, C. S. Gallinat, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, and M. Wraback: Appl. Phys. Lett. 89 (2006) 071902. – reference: J. Wu and W. Walukiewicz: Superlattices Microstruct. 34 (2003) 63. – reference: L. F. Piper, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 88 (2006) 252109. – reference: K. Wang, Y. Cao, J. Simon, J. Zhang, A. Mintairov, J. Merz, D. Hall, T. Kosel, and D. Jena: Appl. Phys. Lett. 89 (2006) 162110. – reference: X. Wang and A. Yoshikawa: Prog. Cryst. Growth Charact. Mater. 48--49 (2004) 42. – reference: C. S. Gallinat, G. Koblmüller, J. S. Brown, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, and M. Wraback: Appl. Phys. Lett. 89 (2006) 032109. – volume: 99 start-page: 182107 year: 2011 ident: APEX-5-015502-20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3658626 – volume: 42 start-page: 2549 year: 2003 ident: APEX-5-015502-4 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.42.2549 – volume: 107 start-page: 053517 year: 2010 ident: APEX-5-015502-15 publication-title: J. Appl. Phys. doi: 10.1063/1.3319557 – volume: 84 start-page: 075315 year: 2011 ident: APEX-5-015502-5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075315 – volume: 96 start-page: 125506 year: 2006 ident: APEX-5-015502-21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.125505 – volume: 45 start-page: L730 year: 2006 ident: APEX-5-015502-10 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.45.L730 – volume: 2 start-page: 051001 year: 2009 ident: APEX-5-015502-17 publication-title: Appl. Phys. Express doi: 10.1143/APEX.2.051001 – volume: 94 start-page: 022109 year: 2009 ident: APEX-5-015502-13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3065030 – volume: 311 start-page: 2073 year: 2009 ident: APEX-5-015502-16 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2008.12.016 – volume: 76 start-page: 045206 year: 2007 ident: APEX-5-015502-19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.045206 – volume: 99 start-page: 073512 year: 2006 ident: APEX-5-015502-8 publication-title: J. Appl. Phys. doi: 10.1063/1.2190720 – volume: 229 start-page: R1 year: 2002 ident: APEX-5-015502-3 publication-title: Phys. Status Solidi B doi: 10.1002/1521-3951(200202)229:33.0.CO;2-O – volume: 89 start-page: 071902 year: 2006 ident: APEX-5-015502-6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2335685 – volume: 98 start-page: 192114 year: 2011 ident: APEX-5-015502-22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3592257 – volume: 89 start-page: 162110 year: 2006 ident: APEX-5-015502-23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2364456 – volume: 34 start-page: 63 year: 2003 ident: APEX-5-015502-1 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2004.03.069 – volume: 92 start-page: 172101 year: 2008 ident: APEX-5-015502-14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2917473 – volume: 90 start-page: 151901 year: 2007 ident: APEX-5-015502-12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2720717 – volume: 92 start-page: 036804 year: 2004 ident: APEX-5-015502-18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.036804 – volume: 89 start-page: 032109 year: 2006 ident: APEX-5-015502-9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2234274 – volume: 48--49 start-page: 42 year: 2004 ident: APEX-5-015502-2 publication-title: Prog. Cryst. Growth Charact. Mater. doi: 10.1016/j.pcrysgrow.2005.03.002 – volume: 88 start-page: 252109 year: 2006 ident: APEX-5-015502-7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2214156 – volume: 90 start-page: 162103 year: 2007 ident: APEX-5-015502-11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2722693 |
SSID | ssj0064316 |
Score | 2.2720132 |
Snippet | A boundary-temperature-controlled epitaxy, where the growth temperature of InN is controlled at its maximum, is used to obtain high-electron-mobility InN... |
SourceID | crossref ipap |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 015502 |
Title | High-Electron-Mobility InN Layers Grown by Boundary-Temperature-Controlled Epitaxy |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELdGJyRe0NhAfGwomhAvwyV1Ert5ZFURmviopiL1LbIdByqhtEAR6_567uwk_aBjwEsUWbar5n69_Hy9-x0he4Y1VWy0onEaSRrKBtwBsaCcicyXXPtcYkD_7JyfXIa_elFvrrpkpOr678K6kvdYFcbArlgl-wbLVpvCANyDfeEKFobrq2yMSRq0XTSyoWcDm-g6ht_8-Y9TiVwaQ0uPOVLMn7Z90t2Ydg0QZSekTFsuT_0GSGcbu4f8mfmPtySoLvhxj80AqnwNG4J3bqLXz28BY1dVak__wYZUr2HDwSTgXbjyCfV0q0_703EHm8BRxh2cq0Ru7gvXgKdupscKcevCv0bPYOR8JR6O2GIvHlo1iU67V0dR1XLerFr23Fusyi10ldZBgsuTKHHLl8hHBucIW-F50Slf1Rx1APBEXn6VUoQ1DA5nPn2GtNT6QzmcIiHdT2S1OD14Rw4Ka-SDyT-T5Y4z0BfyezEgPACE5wDhWUB4auz9BxBeAYh1cnnc7rZOaNE0g-qAhyMaG9SeTrluYpv7LOVK8DQKtZ-qRqS4AXroS5WlrAlUXupGJIVhgeYsY4EEuh1skFo-yM0m8YQR0s8Ea2ggzXEgmxL2jpjQsVCoUbRFDsqnkuhCUR4bm9wkC22wRfar6UMnpfKvid_xEb88afu1u-2QlQl8v5La6O7BfAMiOVK7FgxPGShuug |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Electron-Mobility+InN+Layers+Grown+by+Boundary-Temperature-Controlled+Epitaxy&rft.jtitle=Applied+physics+express&rft.au=Wang%2C+Xinqiang&rft.au=Liu%2C+Shitao&rft.au=Ma%2C+Nan&rft.au=Feng%2C+Li&rft.date=2012-01-01&rft.issn=1882-0778&rft.eissn=1882-0786&rft.volume=5&rft.issue=1&rft.spage=15502&rft_id=info:doi/10.1143%2FAPEX.5.015502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1143_APEX_5_015502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-0778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-0778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-0778&client=summon |