The Effect of Carbonyl and Hydroxyl Compounds Addition on CO2 Injection through Hydrocarbon Extraction Processes
CO2 miscible flooding occurs when injection pressure is higher than the minimum miscibility pressure (MMP) which can exceed the fracture pressure. Co-solvents are expected to reduce the MMP by interacting with various hydrocarbons that depend on the polarity and intermolecular forces of solvent and...
Saved in:
Published in | Applied sciences Vol. 11; no. 1; p. 159 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | CO2 miscible flooding occurs when injection pressure is higher than the minimum miscibility pressure (MMP) which can exceed the fracture pressure. Co-solvents are expected to reduce the MMP by interacting with various hydrocarbons that depend on the polarity and intermolecular forces of solvent and oil. However, there are limited studies that have investigated co-solvent performance in CO2 injection through an extraction process based on oil compositional analysis. This paper is aimed at studying the effects of carbonyl and hydroxyl compounds on oil extraction and also the mutual interactions of CO2-oil-carbonyl and -hydroxyl. The experiment is conducted by using VIPS (viscosity, interfacial tension, pressure-volume, and swelling) and gas chromatography (GC) apparatuses. The compositional results from GC are utilized to analyze the performance of co-solvents, which are further classified based on the carbon number and molecular structure of oil. Acetone is a non-associated polar compound which reacts easily with and assists CO2 to extract polar-aromatic heavy and slightly polar components such as alkenes and straight-chain alkanes, due to high polarizability and low cohesive forces. Ethanol is a self-associated polar compound which has the capability of extracting high-boiling fractions and slightly polar-aromatic components. Moreover, both co-solvents also assist CO2 to extract non-polar components because they have non-polar end in the alkyl group. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11010159 |