Numerical Investigation of the Hydrodynamics of Changing Fin Positions within a 4-Fin Surfboard Configuration
Most sports like surfing are highly developed. It is necessary to tease the last percentages out of the competitors and equipment—in the case of surfing the surfboard-fin-system—to win competitions or championships. In this computational investigation, a parameter study of the positioning of the two...
Saved in:
Published in | Applied sciences Vol. 10; no. 3; p. 816 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Most sports like surfing are highly developed. It is necessary to tease the last percentages out of the competitors and equipment—in the case of surfing the surfboard-fin-system—to win competitions or championships. In this computational investigation, a parameter study of the positioning of the two rear fins within a 4-fin configuration with fixed front fins on a surfboard is executed to find appropriate fin positions for specific surf situations. Four different inflow velocities are investigated. The RANS and URANS models combined with the SST k − ω turbulence model, which is available within the computational fluid dynamics (CFD) package STAR-CCM+, are used to simulate the flow field around the fins for angles of attack (AoA) between 0° and 45°. The simulation results show that shifting the rear fins toward the longitudinal axis of the surfboard lowers the maximum lift. Surfboards with 4-fin configurations are slower in nearly the whole range of AoA due to a higher drag force but produce a higher lift force compared to the 3-fin configuration. The lift and drag forces increase significantly with increasing inflow velocity. This study shows a significant influence of the rear fin positioning and the inflow velocity on lift and drag performance characteristics. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10030816 |