On Sverdrup Discontinuities and Vortices in the Southwest Indian Ocean
Abstract The southwest Indian Ocean is distinguished by discontinuities in the wind-driven Sverdrup circulation. These connect the northern and southern tips of Madagascar with Africa and the southern tip of Africa with South America. In an analytical barotropic model with a flat bottom, the discont...
Saved in:
Published in | Journal of physical oceanography Vol. 37; no. 12; pp. 2940 - 2950 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston, MA
American Meteorological Society
01.12.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
The southwest Indian Ocean is distinguished by discontinuities in the wind-driven Sverdrup circulation. These connect the northern and southern tips of Madagascar with Africa and the southern tip of Africa with South America. In an analytical barotropic model with a flat bottom, the discontinuities produce intense westward jets. Those off the northern tip of Madagascar and the southern tip of Africa are always present, while the strength of that off southern Madagascar depends on the position of the zero curl line in the Indian Ocean (the jet is strong if the line intersects Madagascar but weak if the line is north of the island). All three jets are barotropically unstable by the Rayleigh–Kuo criterion. The authors studied the development of the instability using a primitive equation model, with a flat bottom and realistic coastlines. The model produced westward jets at the three sites and these became unstable after several weeks, generating 200–300-km scale eddies. The eddies generated west of Madagascar are in accord with observations and with previous numerical studies. The model’s Agulhas eddies are similar in size to the observed eddies, both the anticyclonic rings and the cyclones that form to the west of the tip of South Africa. However, the model’s Agulhas does not retroflect, most likely because of its lack of stratification and topography, and so cannot capture pinching-off events. It is noteworthy nevertheless that a retroflection is not required to produce eddies here. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-3670 1520-0485 |
DOI: | 10.1175/2007JPO3652.1 |