Communication Efficient Secure Linear Algebra

We present communication efficient secure protocols for a variety of linear algebra problems. Our main building block is a protocol for computing Gaussian Elimination on encrypted data. As input for this protocol, Bob holds a k × k matrix M, encrypted with Alice’s key. At the end of the protocol run...

Full description

Saved in:
Bibliographic Details
Published inLecture notes in computer science pp. 522 - 541
Main Authors Nissim, Kobbi, Weinreb, Enav
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2006
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present communication efficient secure protocols for a variety of linear algebra problems. Our main building block is a protocol for computing Gaussian Elimination on encrypted data. As input for this protocol, Bob holds a k × k matrix M, encrypted with Alice’s key. At the end of the protocol run, Bob holds an encryption of an upper-triangular matrix M ′ such that the number of nonzero elements on the diagonal equals the rank of M. The communication complexity of our protocol is roughly O(k2). Building on Oblivious Gaussian elimination, we present secure protocols for several problems: deciding the intersection of linear and affine subspaces, picking a random vector from the intersection, and obliviously solving a set of linear equations. Our protocols match known (insecure) communication complexity lower bounds, and improve the communication complexity of both Yao’s garbled circuits and that of specific previously published protocols.
Bibliography:The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-540-32732-5_32
ISBN:3540327312
9783540327318
ISSN:0302-9743
1611-3349
DOI:10.1007/11681878_27