A statistical downscaling framework for environmental mapping

In recent years, knowledge extraction from data has become increasingly popular, with many numerical forecasting models, mainly falling into two major categories—chemical transport models (CTMs) and conventional statistical methods. However, due to data and model variability, data-driven knowledge e...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 75; no. 2; pp. 984 - 997
Main Authors Mwitondi, Kassim S., Al-Kuwari, Farha A., Saeed, Raed A., Zargari, Shahrzad
Format Journal Article
LanguageEnglish
Published New York Springer US 06.02.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, knowledge extraction from data has become increasingly popular, with many numerical forecasting models, mainly falling into two major categories—chemical transport models (CTMs) and conventional statistical methods. However, due to data and model variability, data-driven knowledge extraction from high-dimensional, multifaceted data in such applications require generalisations of global to regional or local conditions. Typically, generalisation is achieved via mapping global conditions to local ecosystems and human habitats which amounts to tracking and monitoring environmental dynamics in various geographical areas and their regional and global implications on human livelihood. Statistical downscaling techniques have been widely used to extract high-resolution information from regional-scale variables produced by CTMs in climate model. Conventional applications of these methods are predominantly dimensional reduction in nature, designed to reduce spatial dimension of gridded model outputs without loss of essential spatial information. Their downside is twofold—complete dependence on unlabelled design matrix and reliance on underlying distributional assumptions. We propose a novel statistical downscaling framework for dealing with data and model variability. Its power derives from training and testing multiple models on multiple samples, narrowing down global environmental phenomena to regional discordance through dimensional reduction and visualisation. Hourly ground-level ozone observations were obtained from various environmental stations maintained by the US Environmental Protection Agency, covering the summer period (June–August 2005). Regional patterns of ozone are related to local observations via repeated runs and performance assessment of multiple versions of empirical orthogonal functions or principal components and principal fitted components via an algorithm with fully adaptable parameters. We demonstrate how the algorithm can be extended to weather-dependent and other applications with inherent data randomness and model variability via its built-in interdisciplinary computational power that connects data sources with end-users.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-018-2624-y