Influence of Cognitive Task Difficulty in Postural Control and Hemodynamic Response in the Prefrontal Cortex during Static Postural Standing

In daily life, we perform several tasks simultaneously, and it is essential to have adequate postural control to succeed. Furthermore, when performing two or more tasks concurrently, changes in postural oscillation are expected due to the competition for the attentional resources. The aim of this st...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 13; p. 6363
Main Authors Saraiva, Marina, Paszkiel, Szczepan, Vilas-Boas, João Paulo, Castro, Maria António
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In daily life, we perform several tasks simultaneously, and it is essential to have adequate postural control to succeed. Furthermore, when performing two or more tasks concurrently, changes in postural oscillation are expected due to the competition for the attentional resources. The aim of this study was to evaluate and compare the center of pressure (CoP) behavior and the hemodynamic response of the prefrontal cortex during static postural standing while performing cognitive tasks of increasing levels of difficulty on a smartphone in young adults. Participants were 35 healthy young adults (mean age ± SD = 22.91 ± 3.84 years). Postural control was assessed by the CoP analysis (total excursion of the CoP (TOTEX CoP), displacements of the CoP in medial–lateral (CoP-ML) and anterior–posterior (CoP-AP) directions, mean total velocity displacement of CoP (MVELO CoP), mean displacement velocity of CoP in medial–lateral (MVELO CoP-ML) and anterior–posterior (MVELO CoP-AP) directions, and 95% confidence ellipse sway area (CEA)), the hemodynamic response by the oxyhemoglobin ([oxy-Hb]), deoxyhemoglobin ([deoxy-Hb]), and total hemoglobin ([total-Hb]) concentrations using a force plate and functional near-infrared spectroscopy (fNIR), respectively. The results showed that the difficult cognitive task while performing static postural standing caused an increase in all CoP variables in analysis (p < 0.05) and of [oxy-Hb] (p < 0.05), [deoxy-Hb] (p < 0.05) and [total-Hb] (p < 0.05) compared to the postural task. In conclusion, the increase in the cognitive demands negatively affected the performance of the postural task when performing them concurrently, compared to the postural task alone. The difficult cognitive task while performing the postural task presented a greater influence on postural sway and activation of the prefrontal cortex than the postural task and the easy cognitive task.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12136363