A perspective on FAIR quality control in multiplexed imaging data processing
Multiplexed imaging approaches are getting increasingly adopted for imaging of large tissue areas, yielding big imaging datasets both in terms of the number of samples and the size of image data per sample. The processing and analysis of these datasets is complex owing to frequent technical artifact...
Saved in:
Published in | Frontiers in bioinformatics Vol. 4; p. 1336257 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Multiplexed imaging approaches are getting increasingly adopted for imaging of large tissue areas, yielding big imaging datasets both in terms of the number of samples and the size of image data per sample. The processing and analysis of these datasets is complex owing to frequent technical artifacts and heterogeneous profiles from a high number of stained targets To streamline the analysis of multiplexed images, automated pipelines making use of state-of-the-art algorithms have been developed. In these pipelines, the output quality of one processing step is typically dependent on the output of the previous step and errors from each step, even when they appear minor, can propagate and confound the results. Thus, rigorous quality control (QC) at each of these different steps of the image processing pipeline is of paramount importance both for the proper analysis and interpretation of the analysis results and for ensuring the reusability of the data. Ideally, QC should become an integral and easily retrievable part of the imaging datasets and the analysis process. Yet, limitations of the currently available frameworks make integration of interactive QC difficult for large multiplexed imaging data. Given the increasing size and complexity of multiplexed imaging datasets, we present the different challenges for integrating QC in image analysis pipelines as well as suggest possible solutions that build on top of recent advances in bioimage analysis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2673-7647 2673-7647 |
DOI: | 10.3389/fbinf.2024.1336257 |