Transcriptome Analyses Reveal Differences in the Metabolic Pathways of the Essential Oil Principal Components of Different Cinnamomum Chemotypes

The genus Cinnamomum exhibits a rich variety of chemotypes and is an economically important essential oil (EO)-producing plant belonging to the family Lauraceae. Here, we aimed to explore the potential differences in the terpenoid (the principal components of EOs) biosynthesis pathways of different...

Full description

Saved in:
Bibliographic Details
Published inForests Vol. 15; no. 9; p. 1621
Main Authors Sun, Weihong, Ni, Hui, Zhao, Zhuang, Zou, Shuangquan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The genus Cinnamomum exhibits a rich variety of chemotypes and is an economically important essential oil (EO)-producing plant belonging to the family Lauraceae. Here, we aimed to explore the potential differences in the terpenoid (the principal components of EOs) biosynthesis pathways of different chemotypes at the molecular level in four Cinnamomum species—C. camphora var. linaloolifera, C. kanehirae, C. longipaniculatum, and C. micranthum. Gas chromatography–mass spectrometry (GC-MS) was employed to elucidate the discrepancies in the chemical profiles and compositions of leaf EO terpenoids among the four Cinnamomum species. The results revealed significant variations in leaf EO yields. The main constituents of the leaf EOs from C. camphora var. linaloolifera and C. kanehirae were the acyclic monoterpene linalool, and those of C. longipaniculatum and C. micranthum were the monoterpene eucalyptol and the sesquiterpene β-caryophyllene, respectively. Furthermore, a comparative transcriptome analysis of the leaves from the four Cinnamomum species revealed that differentially expressed genes (DEGs) were significantly enriched in terpene-related entries. Specifically, 42 and 24 DEGs were significantly enriched to the mevalonate (MVA)/2-methylerythritol 4-phosphate (MEP) pathways and terpene synthase (TPS) activity, respectively. Most genes encoding proteins involved in the terpenoid precursor MVA and MEP pathways exhibited differential expression across the four species, which correlated with the distinct terpenoid profiles observed in their leaf EOs. Four acyclic monoterpene linalool synthase genes—Maker00024100, Maker00014813, Maker00014818, and Maker00018424—were highly expressed in C. camphora var. linaloolifera and C. kanehirae. A monoterpene eucalyptol synthesis gene, Maker00001509, was highly expressed in C. longipaniculatum, and a sesquiterpene β-stigmasterol synthesis gene, Maker00005791, was highly expressed in C. micranthum. These expression levels were subsequently validated through quantitative real-time polymerase chain reaction (qRT-PCR). In conclusion, the combined results of the GC-MS and transcriptome analyses revealed a strong correlation between the metabolite content of the EOs and gene expression. This research contributes to a better understanding of the differences in terpene accumulation in various chemotypes of Cinnamomum at the molecular and mechanistic levels, laying a solid foundation for the cultivation of an ideal Cinnamomum variety.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1999-4907
1999-4907
DOI:10.3390/f15091621