Hybrid Full-Duplex/Half-Duplex Relaying with Transmit Power Adaptation

Focusing on two-antenna infrastructure relays employed for coverage extension, we develop hybrid techniques that switch opportunistically between full-duplex and half-duplex relaying modes. To rationalize the system design, the classic three-node full-duplex relay link is first amended by explicitly...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 10; no. 9; pp. 3074 - 3085
Main Authors Riihonen, T., Werner, S., Wichman, R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Focusing on two-antenna infrastructure relays employed for coverage extension, we develop hybrid techniques that switch opportunistically between full-duplex and half-duplex relaying modes. To rationalize the system design, the classic three-node full-duplex relay link is first amended by explicitly modeling residual relay self-interference, i.e., a loopback signal from the transmit antenna to the receive antenna remaining after cancellation. The motivation for opportunistic mode selection stems then from the fundamental trade-off determining the spectral efficiency: The half-duplex mode avoids inherently the self-interference at the cost of halving the end-to-end symbol rate while the full-duplex mode achieves full symbol rate but, in practice, suffers from residual interference even after cancellation. We propose the combination of opportunistic mode selection and transmit power adaptation for maximizing instantaneous and average spectral efficiency after noting that the trade-off favors alternately the modes during operation. The analysis covers both common relaying protocols (amplify-and-forward and decode-and-forward) as well as reflects the difference of downlink and uplink systems. The results show that opportunistic mode selection offers significant performance gain over system design that is confined to either mode without rationalization.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2011.071411.102266