Dielectric characterization and conduction modelling of a water tree degraded LDPE

Distribution of electric energy by extruded polymer insulated cables continues to be a subject of outstanding relevance in modern industrialized countries all over the world. Dielectric characterization, conduction modelling and finally diagnostics of polymeric insulations are necessary steps toward...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on dielectrics and electrical insulation Vol. 13; no. 6; pp. 1225 - 1235
Main Authors Acedo, M., Frutos, F., Radu, I., Filippini, J.C.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Distribution of electric energy by extruded polymer insulated cables continues to be a subject of outstanding relevance in modern industrialized countries all over the world. Dielectric characterization, conduction modelling and finally diagnostics of polymeric insulations are necessary steps towards the development of reliable and less expensive robust technologies of electric power distribution. This paper is devoted to a detailed experimental/theoretical study of the conductive properties of LDPE affected by different levels of degradation by water trees. Water tree layers of different lengths were grown in accelerated conditions and were characterized by water tree kinetics, time-dependent permittivity and polarization current. The polarization current was found to obey a Curie-von Schweidler law whose parameters were used to characterize the effect of ageing time. A new conduction model that takes into account dipole interactions and was obtained from a two-wells Debye model is presented which allows us to give an interpretation of the effect of ageing. This laboratory study was intended to improve the characterization of service power cables aged by water trees
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1070-9878
1558-4135
DOI:10.1109/TDEI.2006.258194