Holistic Framework for the Implementation and Validation of PBF-LB/M with Risk Management for Individual Products through Predictive Process Stability

The additive manufacturing technology powder bed fusion of metal with a laser beam (PBF-LB/M) is industrially established for tool-free production of complex and individualized components and products. While the in-processing is based on a layer-by-layer build-up of material, both upstream and downs...

Full description

Saved in:
Bibliographic Details
Published inJournal of Manufacturing and Materials Processing Vol. 8; no. 4; p. 158
Main Authors Groneberg, Hajo, Oberdiek, Sven, Schulz, Carolin, Hofmann, Andreas, Schloske, Alexander, Doepper, Frank
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The additive manufacturing technology powder bed fusion of metal with a laser beam (PBF-LB/M) is industrially established for tool-free production of complex and individualized components and products. While the in-processing is based on a layer-by-layer build-up of material, both upstream and downstream process steps (pre-processing and post-processing) are necessary for demand-oriented production. However, there are increasing concerns in the industry about the efficient and economical implementation and validation of the PBF-LB/M. Individual products for mass personalization pose a particular challenge, as they are subject to sophisticated risk management, especially in highly regulated sectors such as medical technology. Additive manufacturing using PBF-LB/M is a suitable technology but a complex one to master in this environment. A structured system for holistic decision-making concerning technical and economic feasibility, as well as quality and risk-oriented process management, is currently not available. In the context of this research, a framework is proposed that demonstrates the essential steps for the systematic implementation and validation of PBF-LB/M in two structured phases. The intention is to make process-related key performance indicators such as part accuracy, surface finish, mechanical properties, and production efficiency controllable and ensure reliable product manufacturing. The framework is then visualized and evaluated using a practice-oriented case study environment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2504-4494
2504-4494
DOI:10.3390/jmmp8040158