Critical thickness of single crystal fcc iron on diamond

The growth of (100) diamond/iron/copper multilayer structures has been examined by reflection high energy electron diffraction, extended X-ray absorption fine structure, and scanning electron microscopy in an effort to determine the thickness limit for metastable face-centered-cubic Fe on (100) diam...

Full description

Saved in:
Bibliographic Details
Published inSurface science Vol. 326; no. 3; pp. 252 - 266
Main Authors Hoff, H.A., Waytena, G.L., Glesener, J.W., Harris, V.G., Pappas, D.P.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 20.03.1995
Amsterdam Elsevier Science
New York, NY
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The growth of (100) diamond/iron/copper multilayer structures has been examined by reflection high energy electron diffraction, extended X-ray absorption fine structure, and scanning electron microscopy in an effort to determine the thickness limit for metastable face-centered-cubic Fe on (100) diamond. Both copper films deposited on iron layers with thicknesses below 1.4 nm and the iron layers themselves were found to be face-centered cubic single crystal, while films grown on iron that was 2.0 nm and thicker and the iron itself were found to be polycrystalline. This critical thickness range of 1.4–2.0 nm compares well with the theoretically calculated value of 1.8 nm. This value was determined using the mechanical equilibrium theories (Matthews-Blakeslee and van der Merwe) with a lattice parameter for face-centered cubic iron that was derived by estimating the functional form of the linear thermal expansion coefficient and extrapolating the Poisson's ratio for austenitic stainless steel to the temperature of interest. The shear modulus, and intrinsic stacking fault energy for fcc Fe from ∼ 1350°C down to below room temperature have also been estimated. A more likely room temperature lattice parameter for fcc Fe than is usually assumed was estimated to be 0.3579 nm. The measured in-plane lattice parameter of strained fcc Fe on diamond was 3.54 ± 0.1 A ̊ .
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0039-6028
1879-2758
DOI:10.1016/0039-6028(94)00787-X