THE FREE ENERGY OF THE TWO-DIMENSIONAL DILUTE BOSE GAS. I. LOWER BOUND
We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas in the thermodynamic limit. We show that the free energy at density $\unicode[STIX]{x1D70C}$ and inverse temperature $\unicode[STIX]{x1D6FD}$ differs from the one of the noninteracting system by the correcti...
Saved in:
Published in | Forum of mathematics. Sigma Vol. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas in the thermodynamic limit. We show that the free energy at density
$\unicode[STIX]{x1D70C}$
and inverse temperature
$\unicode[STIX]{x1D6FD}$
differs from the one of the noninteracting system by the correction term
$4\unicode[STIX]{x1D70B}\unicode[STIX]{x1D70C}^{2}|\ln \,a^{2}\unicode[STIX]{x1D70C}|^{-1}(2-[1-\unicode[STIX]{x1D6FD}_{\text{c}}/\unicode[STIX]{x1D6FD}]_{+}^{2})$
. Here,
$a$
is the scattering length of the interaction potential,
$[\cdot ]_{+}=\max \{0,\cdot \}$
and
$\unicode[STIX]{x1D6FD}_{\text{c}}$
is the inverse Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity. The result is valid in the dilute limit
$a^{2}\unicode[STIX]{x1D70C}\ll 1$
and if
$\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D70C}\gtrsim 1$
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2020.17 |