THE FREE ENERGY OF THE TWO-DIMENSIONAL DILUTE BOSE GAS. I. LOWER BOUND

We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas in the thermodynamic limit. We show that the free energy at density $\unicode[STIX]{x1D70C}$ and inverse temperature $\unicode[STIX]{x1D6FD}$ differs from the one of the noninteracting system by the correcti...

Full description

Saved in:
Bibliographic Details
Published inForum of mathematics. Sigma Vol. 8
Main Authors DEUCHERT, ANDREAS, MAYER, SIMON, SEIRINGER, ROBERT
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas in the thermodynamic limit. We show that the free energy at density $\unicode[STIX]{x1D70C}$ and inverse temperature $\unicode[STIX]{x1D6FD}$ differs from the one of the noninteracting system by the correction term $4\unicode[STIX]{x1D70B}\unicode[STIX]{x1D70C}^{2}|\ln \,a^{2}\unicode[STIX]{x1D70C}|^{-1}(2-[1-\unicode[STIX]{x1D6FD}_{\text{c}}/\unicode[STIX]{x1D6FD}]_{+}^{2})$ . Here, $a$ is the scattering length of the interaction potential, $[\cdot ]_{+}=\max \{0,\cdot \}$ and $\unicode[STIX]{x1D6FD}_{\text{c}}$ is the inverse Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity. The result is valid in the dilute limit $a^{2}\unicode[STIX]{x1D70C}\ll 1$ and if $\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D70C}\gtrsim 1$ .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2020.17