Insulin Inhibits the Pro-Inflammatory Transcription Factor Early Growth Response Gene-1 (Egr)-1 Expression in Mononuclear Cells (MNC) and Reduces Plasma Tissue Factor (TF) and Plasminogen Activator Inhibitor-1 (PAI-1) Concentrations

We have recently demonstrated that an infusion of a low dose of insulin reduces the intranuclear NF-κB (a pro-inflammatory transcription factor) content in MNC while also reducing the p;asma concentration of NF-κB dependent pro-inflammatory cytokines and adhesion molecules. We have now tested the ef...

Full description

Saved in:
Bibliographic Details
Published inThe journal of clinical endocrinology and metabolism Vol. 87; no. 3; pp. 1419 - 1422
Main Authors Aljada, Ahmad, Ghanim, Husam, Mohanty, Priya, Kapur, Neeti, Dandona, Paresh
Format Journal Article
LanguageEnglish
Published Bethesda, MD Oxford University Press 01.03.2002
Endocrine Society
Subjects
Online AccessGet full text
ISSN0021-972X
1945-7197
DOI10.1210/jcem.87.3.8462

Cover

Loading…
More Information
Summary:We have recently demonstrated that an infusion of a low dose of insulin reduces the intranuclear NF-κB (a pro-inflammatory transcription factor) content in MNC while also reducing the p;asma concentration of NF-κB dependent pro-inflammatory cytokines and adhesion molecules. We have now tested the effect of insulin on the pro-inflammatory transcription factor, early growth response-1 (Egr-1) and plasma concentration of tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1), two major proteins whose expression is modulated by Egr-1. Insulin was infused at the rate of 2 IU/h in 5% dextrose (100 mL/h) and KCI (8 mmol/h) for 4 h in the fasting state in ten obese subjects. Blood samples were obtained at 0, 2, 4 and 6 h. MNC were isolated and their total homogenates and nuclear fractions were prepared and Egr-1 was measured by electrophoretic mobility shift assay (EMSA). Plasma TF and PAI-1 were assayed by ELISA. There was a significant fall in Egr-1 at 2 (66 ± 14% of basal level) and 4 h (47± 17% of the basal level; P<0.01). PAI-1 levels (basal = 100%) decreased significantly after insulin infusion at 2 h (57 ± 6.7% of the basal level) and at 4 h (58 ± 8.3% of the basal level; P<0.001). Plasma TF levels (basal = 100%) decreased to 76 ± 7.7% of the basal level at 2 h and to 85 ± 10.4% of the basal level at 4 h (P<0.05). Thus, insulin reduces intranuclear Egr-1 and the expression of TF and PAI-1. These data provide further evidence that insulin has an anti-inflammatory effect including the inhibition of TF and PAI-1 expression. These effects suggest a potential beneficial effect of insulin in thrombin formation and fibrinolysis in atherothrombosis.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0021-972X
1945-7197
DOI:10.1210/jcem.87.3.8462