Magnitude and cross-shore distribution of bed return flow measured on natural beaches

Field measurements of cross-shore currents 0.25 m from the bed were made on two natural beaches under a range of incident wave conditions. The results indicated the presence of a relatively strong, offshore-directed mean current, both within and seaward of the surf zone. Typical velocities within th...

Full description

Saved in:
Bibliographic Details
Published inCoastal engineering (Amsterdam) Vol. 25; no. 3; pp. 165 - 190
Main Authors Masselink, Gerhard, Black, Kerry P.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 1995
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Field measurements of cross-shore currents 0.25 m from the bed were made on two natural beaches under a range of incident wave conditions. The results indicated the presence of a relatively strong, offshore-directed mean current, both within and seaward of the surf zone. Typical velocities within the surf zone were of the order of 0.2–0.3 m/s. This bed return flow, or “undertow”, represents a mass conservation response, returning water seaward that was initially transported onshore in the upper water column, primarily above the trough of the incident waves. The measurements demonstrated that the bed return flow velocity increases with the incident wave height. In addition, the crossshore distribution of the bed return flow is characterised by a mid-surf zone maximum, which exhibits a strong decrease in velocity towards the shoreline and a more gradual decay in the offshore direction. Several bed return flow models based on mass continuity were formulated to predict the cross-shore distribution of the bed return flow under an irregular wave field and were compared with the field data. Best agreement was obtained using shallow water linear wave theory, after including the mass transport associated with unbroken waves. The contribution of the unbroken waves enables net offshore-directed bottom currents to persist outside the region of breaking waves, providing a mechanism, other than rip currents, to transport sediment offshore beyond the surf zone.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-3839
1872-7379
DOI:10.1016/0378-3839(95)00002-S