Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS

Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a loca...

Full description

Saved in:
Bibliographic Details
Published inAdvances in atmospheric sciences Vol. 23; no. 4; pp. 551 - 560
Main Author 毕研盟 毛节泰 李成才
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Nature B.V 01.07.2006
Department of Atmospheric Sciences, School of Physics, Peking University, Beijing 100871
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented. A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography, (2) combining GPS observables with vertical constraints or a priori information, which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.
Bibliography:P228.4
11-1925/O4
GPS, slant path, water vapor, tomography
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-1530
1861-9533
DOI:10.1007/s00376-006-0551-y