Multiple Sources of Indosinian Granites and Constraints on the Tectonic Evolution of the Paleo-Tethys Ocean in East Kunlun Orogen

Numerous Indosinian granitoids occur in the East Kunlun Orogen (EKO). The Indosinian was a key transitional period associated with the evolution of the Paleo-Tethys Ocean. Here, we study the relationship between the petrogenesis of the granitoids and the regional tectonic setting based on a comprehe...

Full description

Saved in:
Bibliographic Details
Published inMinerals (Basel) Vol. 12; no. 12; p. 1604
Main Authors Chen, Guochao, Pei, Xianzhi, Li, Ruibao, Li, Zuochen, Chen, Youxin, Liu, Chengjun, Pei, Lei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Numerous Indosinian granitoids occur in the East Kunlun Orogen (EKO). The Indosinian was a key transitional period associated with the evolution of the Paleo-Tethys Ocean. Here, we study the relationship between the petrogenesis of the granitoids and the regional tectonic setting based on a comprehensive analysis of the petrology, geochronology, and geochemistry of typical granitoids in the eastern part of the EKO. The Indosinian granitoid compositions are dominated by quartz diorites, granodiorites, monzogranites, porphyritic monzogranites, and syenogranites. Early Indosinian granitoids are large, granitic batholiths, while the middle and late Indosinian granitoids are smaller in size. From the early Indosinian to late Indosinian, the granitoids show a transition from a medium-K calc-alkaline to high-K calc-alkaline composition. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) and depleted in high-field-strength elements (HFSEs), especially for the Helegangxilikete and the Kekeealong plutons. The late Indosinian granitoids have relatively low Y and Yb contents, high Sr contents, and high La/Yb and Sr/Y ratios, which suggests adakitic affinity. The zircon saturation temperatures of the early Indosinian syenogranite and the Keri syenogranite are above 800 °C. The zircon saturation temperatures of other Indosinian granites (average 749 °C) are lower than those of the biotite and amphibole partial melting experiment. In the early Indosinian (255–240 Ma), numerous granitoids were the products of the partial melting of the juvenile lower crust by mafic magma underplating. This underplating is geodynamically related to the continuous subduction of a branch of Paleo-Tethys Ocean, with slab break-off, rapid upwelling, and mantle decompression. In the middle Indosinian (240–230 Ma), the compression that accompanied the continent–continent collision was not conducive to fluid activity, and hence, the formation of magma could be attributed to dehydration partial melting of muscovite, biotite, or amphibole. In the late Indosinian (230–200 Ma), the delamination of thickened crust would provide heat and channels for fluid migration, leading to a flare-up of the magmas. The composition and petrogenesis of the Indosinian granitoids in the eastern EKO are the result of processes associated with the subduction, collisional, and post-collisional stages, during the evolution of the Paleo-Tethys Ocean.
ISSN:2075-163X
2075-163X
DOI:10.3390/min12121604