Knowledge Graphs Representation for Event-Related E-News Articles

E-newspaper readers are overloaded with massive texts on e-news articles, and they usually mislead the reader who reads and understands information. Thus, there is an urgent need for a technology that can automatically represent the gist of these e-news articles more quickly. Currently, popular mach...

Full description

Saved in:
Bibliographic Details
Published inMachine learning and knowledge extraction Vol. 3; no. 4; pp. 802 - 818
Main Authors Lakshika, M.V.P.T., Caldera, H.A.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text
ISSN2504-4990
2504-4990
DOI10.3390/make3040040

Cover

Abstract E-newspaper readers are overloaded with massive texts on e-news articles, and they usually mislead the reader who reads and understands information. Thus, there is an urgent need for a technology that can automatically represent the gist of these e-news articles more quickly. Currently, popular machine learning approaches have greatly improved presentation accuracy compared to traditional methods, but they cannot be accommodated with the contextual information to acquire higher-level abstraction. Recent research efforts in knowledge representation using graph approaches are neither user-driven nor flexible to deviations in the data. Thus, there is a striking concentration on constructing knowledge graphs by combining the background information related to the subjects in text documents. We propose an enhanced representation of a scalable knowledge graph by automatically extracting the information from the corpus of e-news articles and determine whether a knowledge graph can be used as an efficient application in analyzing and generating knowledge representation from the extracted e-news corpus. This knowledge graph consists of a knowledge base built using triples that automatically produce knowledge representation from e-news articles. Inclusively, it has been observed that the proposed knowledge graph generates a comprehensive and precise knowledge representation for the corpus of e-news articles.
AbstractList E-newspaper readers are overloaded with massive texts on e-news articles, and they usually mislead the reader who reads and understands information. Thus, there is an urgent need for a technology that can automatically represent the gist of these e-news articles more quickly. Currently, popular machine learning approaches have greatly improved presentation accuracy compared to traditional methods, but they cannot be accommodated with the contextual information to acquire higher-level abstraction. Recent research efforts in knowledge representation using graph approaches are neither user-driven nor flexible to deviations in the data. Thus, there is a striking concentration on constructing knowledge graphs by combining the background information related to the subjects in text documents. We propose an enhanced representation of a scalable knowledge graph by automatically extracting the information from the corpus of e-news articles and determine whether a knowledge graph can be used as an efficient application in analyzing and generating knowledge representation from the extracted e-news corpus. This knowledge graph consists of a knowledge base built using triples that automatically produce knowledge representation from e-news articles. Inclusively, it has been observed that the proposed knowledge graph generates a comprehensive and precise knowledge representation for the corpus of e-news articles.
Author Caldera, H.A.
Lakshika, M.V.P.T.
Author_xml – sequence: 1
  givenname: M.V.P.T.
  surname: Lakshika
  fullname: Lakshika, M.V.P.T.
– sequence: 2
  givenname: H.A.
  surname: Caldera
  fullname: Caldera, H.A.
BookMark eNptUNFKwzAUDaLgnHvyBwo-SjVp0iV5HGPO4VAY-hzS5HZ2dk1NOod_b7QiQ4TAzT333HMP5wwdN64BhC4IvqZU4putfgWKGY7vCA2yHLOUSYmPD_6naBTCBmOccckIZgM0uW_cvga7hmTudfsSkhW0HgI0ne4q1ySl88nsPbbpCmrdgU1m6QPsQzLxXWVqCOfopNR1gNFPHaLn29nT9C5dPs4X08kyNXTMupTkFlhhDEAuKPASSxDcWFIwSYiMDg3JIiAyIYksOQcjjckjxCwFYjgdokWva53eqNZXW-0_lNOV-gacXyvdW1KWZbllZT4mWDDLhI6ZCKyLeFkUY5JFrcteq_XubQehUxu38020r7I455JLSSPrqmcZ70LwUP5eJVh9Ra4OIo9s8odtqj7Dzuuq_nfnE66Zg7k
CitedBy_id crossref_primary_10_3390_electronics13010171
crossref_primary_10_3390_su141912299
crossref_primary_10_15622_ia_21_6_4
Cites_doi 10.1109/ICALIP.2018.8455241
10.1609/aaai.v34i05.6231
10.18653/v1/P18-2057
10.1016/j.csbj.2020.05.017
10.1109/ICT4M.2010.5971919
10.3390/info11050268
10.1016/j.procs.2016.06.080
10.1162/dint_a_00019
10.18653/v1/2020.acl-main.457
10.1109/ICDM.2019.00063
10.1109/TNNLS.2021.3070843
10.18653/v1/2020.coling-main.84
10.1109/TKDE.2018.2807442
10.1109/TKDE.2017.2754499
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/make3040040
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-4990
EndPage 818
ExternalDocumentID oai_doaj_org_article_d425d4f561084d48a00480ab5838b612
10_3390_make3040040
GroupedDBID AADQD
AAFWJ
AAYXX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
K7-
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-15de4bccee583e7f09e87cd1b49119250c1287c828919f77ec9cc52874d3e1c73
IEDL.DBID DOA
ISSN 2504-4990
IngestDate Wed Aug 27 01:15:44 EDT 2025
Fri Jul 25 02:24:24 EDT 2025
Tue Jul 01 03:11:07 EDT 2025
Thu Apr 24 22:57:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-15de4bccee583e7f09e87cd1b49119250c1287c828919f77ec9cc52874d3e1c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/d425d4f561084d48a00480ab5838b612
PQID 2612797993
PQPubID 5046881
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_d425d4f561084d48a00480ab5838b612
proquest_journals_2612797993
crossref_primary_10_3390_make3040040
crossref_citationtrail_10_3390_make3040040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machine learning and knowledge extraction
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Song (ref_7) 2018; 30
Nicholson (ref_13) 2020; 18
Wang (ref_17) 2017; 29
Wang (ref_11) 2019; 1
ref_14
ref_12
ref_10
Malviya (ref_6) 2016; 89
ref_1
ref_3
ref_2
ref_16
ref_15
ref_9
ref_8
ref_5
ref_4
References_xml – ident: ref_1
  doi: 10.1109/ICALIP.2018.8455241
– ident: ref_9
– ident: ref_12
  doi: 10.1609/aaai.v34i05.6231
– ident: ref_15
  doi: 10.18653/v1/P18-2057
– volume: 18
  start-page: 1414
  year: 2020
  ident: ref_13
  article-title: Constructing knowledge graphs and their biomedical applications
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.05.017
– ident: ref_5
  doi: 10.1109/ICT4M.2010.5971919
– ident: ref_16
  doi: 10.3390/info11050268
– volume: 89
  start-page: 333
  year: 2016
  ident: ref_6
  article-title: Knowledge-Based Summarization and Document Generation using Bayesian Network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.06.080
– volume: 1
  start-page: 333
  year: 2019
  ident: ref_11
  article-title: Knowledge Graph Construction and Applications for Web Search and Beyond
  publication-title: Data Intell.
  doi: 10.1162/dint_a_00019
– ident: ref_2
  doi: 10.18653/v1/2020.acl-main.457
– ident: ref_4
  doi: 10.1109/ICDM.2019.00063
– ident: ref_10
  doi: 10.1109/TNNLS.2021.3070843
– ident: ref_14
– ident: ref_3
  doi: 10.18653/v1/2020.coling-main.84
– ident: ref_8
  doi: 10.1109/ICDM.2019.00063
– volume: 30
  start-page: 1887
  year: 2018
  ident: ref_7
  article-title: Mining Summaries for Knowledge Graph Search
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2807442
– volume: 29
  start-page: 2724
  year: 2017
  ident: ref_17
  article-title: Knowledge Graph Embedding: A Survey of Approaches and Applications
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2754499
SSID ssj0002794104
Score 2.1868753
Snippet E-newspaper readers are overloaded with massive texts on e-news articles, and they usually mislead the reader who reads and understands information. Thus,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 802
SubjectTerms Automation
e-news articles
Electronic newspapers
Graphical representations
Graphs
knowledge base
Knowledge bases (artificial intelligence)
knowledge graph
Knowledge representation
Machine learning
Multilingualism
Ontology
Search engines
Semantics
SPO triples
Subject specialists
Web sites
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLCwIBIhCQRk6IVlNaieOJ1RQHwLBgKjULUrODgOQlqb8f-5cp4BArImT4Xz-7unvGOtKJRAb85KDVDGnwhDXeaK5LHIVGSmtcOPe7h-SyVTezuKZT7jVvq2ywUQH1GYOlCPvEdWVohqUuFq8c5oaRdVVP0Jjm-1EaGlIz9PReJNjwQ8khhvra3kCo_veW_5ihdPb8Ichcnz9v-DY2ZjRPtvzzmEwWO_mAduy1SEb3DVpr2BM7NJ18Oi6V_2loSpAtzMYUtsid51t1gRDTtjV_Kc-YtPR8Olmwv3gAw4ikSsexcbKAtB-xamwqgy1TRWYqJAITRqdFkCrooCCpUiXSlnQADEx1xthI1DimLWqeWVPWCBCiFHufUDHT-alKhKZgtGhQKTSoPttdtlIIQPPCk7DKV4zjA5IZNk3kbVZd7N4sSbD-HvZNYlzs4QYrN2D-fI58wciMwgWRpbkvqXSyDR3t9vzgsq4Be51m3Wazcj8saqzLyU4_f_1GdvtU_OJ6zvpsNZq-WHP0XtYFRdORT4BLcbCEA
  priority: 102
  providerName: ProQuest
Title Knowledge Graphs Representation for Event-Related E-News Articles
URI https://www.proquest.com/docview/2612797993
https://doaj.org/article/d425d4f561084d48a00480ab5838b612
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60XryIomK1lhx6EpYm2Uk2e2wlrSgtUiz0FpLdzcFHFVuv_nZnNkmpKHjxkkMY8piZzCMz8w1jPZACbWNecg0y4lQY4iqPFYcil4EBsMKte5tM45s53C6ixdaqL-oJq-CBK8b1DSqVgZLcfAIGktxNQecFlfuK2O0XDn3lbyVTj66cpgATjWogT2Be33_Jn6xwGut_c0EOqf-HIXbeZXTIDuqw0BtUj3PEduzymA3umh9e3phwpVfezPWt1uNCSw8DTi-lhkXuetqs8VJOVqu5zuqEzUfpw_UNr1cecC1iWPMgMhYKjZ4L38_K0lc2kdoEBaBRUhiuaPQnUlOaFKhSSquV1hFh1hthAy3FKWstX5f2jHnC1xFyPNQY8kFeyiKGRBvlC7RRSquwza4aLmS6xgOntRTPGeYFxLJsi2Vt1tsQv1UwGL-TDYmdGxLCrnYnUKJZLdHsL4m2WacRRlZ_UKuMkM4klSDF-X_c44Lth9Sc4vpSOqy1fv-wlxhdrIsu201G4y7bG6bT-1nXqRUeJ5_pFx5gzK8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHOCCQIAYzx7gghTRNunSHBDaYDAYTAiBxK20ScoB2AYbQvwpfiN21g4QiBvXNooix_5sxy-ALSE5YmOaMy1kxCgwxFRaU0xkqQyMEJa7cW_nnVrrWpzeRDcT8F7WwlBaZYmJDqhNT9Mb-S61upIUg-L7_SdGU6MoulqO0BixRdu-vaLLNtg7OcT73Q7Do-bVQYsVUwWY5jUxZEFkrMg0Koco5lbmvrKx1CbIBMq9QotAI2RLTZ5IoHIprVZaR9QW3nAbaMlx30mYElTRWoGpRrNzcTl-1cEjCnRwRoWAnCt_9zG9t9xJiv9N9bkJAT8UgNNqR3MwW5ijXn3EP_MwYbsLUG-XD23eMfWzHniXLl-2KFPqemjoek1KlGQul84ar8kILct9Botw_S9EWYJKt9e1y-BxX0d406FGU1OkucxqItZG-RyxUWkVVmGnpEKiiz7kNA7jIUF_hEiWfCFZFbbGi_uj9hu_L2sQOcdLqGe2-9B7vksKEUwMwpMRORmMsTAiTl09fZpR4DhD7qrCWnkZSSHIg-ST7Vb-_r0J062r87Pk7KTTXoWZkFJfXNbLGlSGzy92HW2XYbZRMIwHt__Nox9rRgAc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgSIgLAgFiPHuAC1K0tkmX5oAQYxuPwYQQSNxKm6QcgA3YEOKv8euws3aAQNy4tlFVOc5nO_5sA2wJyREb05xpISNGiSGm0rpiIktlYISw3I17O-vWj67EyXV0PQHvZS0M0SpLTHRAbfqa7shr1OpKUg6K1_KCFnHebO89PjGaIEWZ1nKcxkhFOvbtFcO3we5xE_d6OwzbrcuDI1ZMGGCa18WQBZGxItNoKKKYW5n7ysZSmyATiAEKvQON8C01RSWByqW0WmkdUYt4w22gJcfvTsKURKsoKjDVaHXPL8Y3PPi7AoOdUVEg58qvPaR3lrtT438zg25awA9j4Cxcew5mC9fU2x_p0jxM2N4C7HfKSzfvkHpbD7wLx50tSpZ6Hjq9XotIk8zx6qzxWoyQs_zOYBGu_kUoS1Dp9Xt2GTzu6wh3PdTodoo0l1ldxNoonyNOKq3CKuyUUkh00ZOcRmPcJxibkMiSLyKrwtZ48eOoFcfvyxokzvES6p_tHvSfb5PiOCYGocqInJzHWBgRp662Ps0oiZyhplVhrdyMpDjUg-RTBVf-fr0J06ibyelxt7MKMyGxYBwBZg0qw-cXu45uzDDbKPTFg5v_VtEPCSoESA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+Graphs+Representation+for+Event-Related+E-News+Articles&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Lakshika%2C+M.V.P.T.&rft.au=Caldera%2C+H.A.&rft.date=2021-12-01&rft.issn=2504-4990&rft.eissn=2504-4990&rft.volume=3&rft.issue=4&rft.spage=802&rft.epage=818&rft_id=info:doi/10.3390%2Fmake3040040&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_make3040040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon