Knowledge Graphs Representation for Event-Related E-News Articles
E-newspaper readers are overloaded with massive texts on e-news articles, and they usually mislead the reader who reads and understands information. Thus, there is an urgent need for a technology that can automatically represent the gist of these e-news articles more quickly. Currently, popular mach...
Saved in:
Published in | Machine learning and knowledge extraction Vol. 3; no. 4; pp. 802 - 818 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-4990 2504-4990 |
DOI | 10.3390/make3040040 |
Cover
Abstract | E-newspaper readers are overloaded with massive texts on e-news articles, and they usually mislead the reader who reads and understands information. Thus, there is an urgent need for a technology that can automatically represent the gist of these e-news articles more quickly. Currently, popular machine learning approaches have greatly improved presentation accuracy compared to traditional methods, but they cannot be accommodated with the contextual information to acquire higher-level abstraction. Recent research efforts in knowledge representation using graph approaches are neither user-driven nor flexible to deviations in the data. Thus, there is a striking concentration on constructing knowledge graphs by combining the background information related to the subjects in text documents. We propose an enhanced representation of a scalable knowledge graph by automatically extracting the information from the corpus of e-news articles and determine whether a knowledge graph can be used as an efficient application in analyzing and generating knowledge representation from the extracted e-news corpus. This knowledge graph consists of a knowledge base built using triples that automatically produce knowledge representation from e-news articles. Inclusively, it has been observed that the proposed knowledge graph generates a comprehensive and precise knowledge representation for the corpus of e-news articles. |
---|---|
AbstractList | E-newspaper readers are overloaded with massive texts on e-news articles, and they usually mislead the reader who reads and understands information. Thus, there is an urgent need for a technology that can automatically represent the gist of these e-news articles more quickly. Currently, popular machine learning approaches have greatly improved presentation accuracy compared to traditional methods, but they cannot be accommodated with the contextual information to acquire higher-level abstraction. Recent research efforts in knowledge representation using graph approaches are neither user-driven nor flexible to deviations in the data. Thus, there is a striking concentration on constructing knowledge graphs by combining the background information related to the subjects in text documents. We propose an enhanced representation of a scalable knowledge graph by automatically extracting the information from the corpus of e-news articles and determine whether a knowledge graph can be used as an efficient application in analyzing and generating knowledge representation from the extracted e-news corpus. This knowledge graph consists of a knowledge base built using triples that automatically produce knowledge representation from e-news articles. Inclusively, it has been observed that the proposed knowledge graph generates a comprehensive and precise knowledge representation for the corpus of e-news articles. |
Author | Caldera, H.A. Lakshika, M.V.P.T. |
Author_xml | – sequence: 1 givenname: M.V.P.T. surname: Lakshika fullname: Lakshika, M.V.P.T. – sequence: 2 givenname: H.A. surname: Caldera fullname: Caldera, H.A. |
BookMark | eNptUNFKwzAUDaLgnHvyBwo-SjVp0iV5HGPO4VAY-hzS5HZ2dk1NOod_b7QiQ4TAzT333HMP5wwdN64BhC4IvqZU4putfgWKGY7vCA2yHLOUSYmPD_6naBTCBmOccckIZgM0uW_cvga7hmTudfsSkhW0HgI0ne4q1ySl88nsPbbpCmrdgU1m6QPsQzLxXWVqCOfopNR1gNFPHaLn29nT9C5dPs4X08kyNXTMupTkFlhhDEAuKPASSxDcWFIwSYiMDg3JIiAyIYksOQcjjckjxCwFYjgdokWva53eqNZXW-0_lNOV-gacXyvdW1KWZbllZT4mWDDLhI6ZCKyLeFkUY5JFrcteq_XubQehUxu38020r7I455JLSSPrqmcZ70LwUP5eJVh9Ra4OIo9s8odtqj7Dzuuq_nfnE66Zg7k |
CitedBy_id | crossref_primary_10_3390_electronics13010171 crossref_primary_10_3390_su141912299 crossref_primary_10_15622_ia_21_6_4 |
Cites_doi | 10.1109/ICALIP.2018.8455241 10.1609/aaai.v34i05.6231 10.18653/v1/P18-2057 10.1016/j.csbj.2020.05.017 10.1109/ICT4M.2010.5971919 10.3390/info11050268 10.1016/j.procs.2016.06.080 10.1162/dint_a_00019 10.18653/v1/2020.acl-main.457 10.1109/ICDM.2019.00063 10.1109/TNNLS.2021.3070843 10.18653/v1/2020.coling-main.84 10.1109/TKDE.2018.2807442 10.1109/TKDE.2017.2754499 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/make3040040 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-4990 |
EndPage | 818 |
ExternalDocumentID | oai_doaj_org_article_d425d4f561084d48a00480ab5838b612 10_3390_make3040040 |
GroupedDBID | AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ K7- MODMG M~E OK1 PHGZM PHGZT PIMPY 8FE 8FG ABUWG AZQEC COVID DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-15de4bccee583e7f09e87cd1b49119250c1287c828919f77ec9cc52874d3e1c73 |
IEDL.DBID | DOA |
ISSN | 2504-4990 |
IngestDate | Wed Aug 27 01:15:44 EDT 2025 Fri Jul 25 02:24:24 EDT 2025 Tue Jul 01 03:11:07 EDT 2025 Thu Apr 24 22:57:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-15de4bccee583e7f09e87cd1b49119250c1287c828919f77ec9cc52874d3e1c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/d425d4f561084d48a00480ab5838b612 |
PQID | 2612797993 |
PQPubID | 5046881 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d425d4f561084d48a00480ab5838b612 proquest_journals_2612797993 crossref_primary_10_3390_make3040040 crossref_citationtrail_10_3390_make3040040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Machine learning and knowledge extraction |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Song (ref_7) 2018; 30 Nicholson (ref_13) 2020; 18 Wang (ref_17) 2017; 29 Wang (ref_11) 2019; 1 ref_14 ref_12 ref_10 Malviya (ref_6) 2016; 89 ref_1 ref_3 ref_2 ref_16 ref_15 ref_9 ref_8 ref_5 ref_4 |
References_xml | – ident: ref_1 doi: 10.1109/ICALIP.2018.8455241 – ident: ref_9 – ident: ref_12 doi: 10.1609/aaai.v34i05.6231 – ident: ref_15 doi: 10.18653/v1/P18-2057 – volume: 18 start-page: 1414 year: 2020 ident: ref_13 article-title: Constructing knowledge graphs and their biomedical applications publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2020.05.017 – ident: ref_5 doi: 10.1109/ICT4M.2010.5971919 – ident: ref_16 doi: 10.3390/info11050268 – volume: 89 start-page: 333 year: 2016 ident: ref_6 article-title: Knowledge-Based Summarization and Document Generation using Bayesian Network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.06.080 – volume: 1 start-page: 333 year: 2019 ident: ref_11 article-title: Knowledge Graph Construction and Applications for Web Search and Beyond publication-title: Data Intell. doi: 10.1162/dint_a_00019 – ident: ref_2 doi: 10.18653/v1/2020.acl-main.457 – ident: ref_4 doi: 10.1109/ICDM.2019.00063 – ident: ref_10 doi: 10.1109/TNNLS.2021.3070843 – ident: ref_14 – ident: ref_3 doi: 10.18653/v1/2020.coling-main.84 – ident: ref_8 doi: 10.1109/ICDM.2019.00063 – volume: 30 start-page: 1887 year: 2018 ident: ref_7 article-title: Mining Summaries for Knowledge Graph Search publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2807442 – volume: 29 start-page: 2724 year: 2017 ident: ref_17 article-title: Knowledge Graph Embedding: A Survey of Approaches and Applications publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2754499 |
SSID | ssj0002794104 |
Score | 2.1868753 |
Snippet | E-newspaper readers are overloaded with massive texts on e-news articles, and they usually mislead the reader who reads and understands information. Thus,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 802 |
SubjectTerms | Automation e-news articles Electronic newspapers Graphical representations Graphs knowledge base Knowledge bases (artificial intelligence) knowledge graph Knowledge representation Machine learning Multilingualism Ontology Search engines Semantics SPO triples Subject specialists Web sites |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLCwIBIhCQRk6IVlNaieOJ1RQHwLBgKjULUrODgOQlqb8f-5cp4BArImT4Xz-7unvGOtKJRAb85KDVDGnwhDXeaK5LHIVGSmtcOPe7h-SyVTezuKZT7jVvq2ywUQH1GYOlCPvEdWVohqUuFq8c5oaRdVVP0Jjm-1EaGlIz9PReJNjwQ8khhvra3kCo_veW_5ihdPb8Ichcnz9v-DY2ZjRPtvzzmEwWO_mAduy1SEb3DVpr2BM7NJ18Oi6V_2loSpAtzMYUtsid51t1gRDTtjV_Kc-YtPR8Olmwv3gAw4ikSsexcbKAtB-xamwqgy1TRWYqJAITRqdFkCrooCCpUiXSlnQADEx1xthI1DimLWqeWVPWCBCiFHufUDHT-alKhKZgtGhQKTSoPttdtlIIQPPCk7DKV4zjA5IZNk3kbVZd7N4sSbD-HvZNYlzs4QYrN2D-fI58wciMwgWRpbkvqXSyDR3t9vzgsq4Be51m3Wazcj8saqzLyU4_f_1GdvtU_OJ6zvpsNZq-WHP0XtYFRdORT4BLcbCEA priority: 102 providerName: ProQuest |
Title | Knowledge Graphs Representation for Event-Related E-News Articles |
URI | https://www.proquest.com/docview/2612797993 https://doaj.org/article/d425d4f561084d48a00480ab5838b612 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60XryIomK1lhx6EpYm2Uk2e2wlrSgtUiz0FpLdzcFHFVuv_nZnNkmpKHjxkkMY8piZzCMz8w1jPZACbWNecg0y4lQY4iqPFYcil4EBsMKte5tM45s53C6ixdaqL-oJq-CBK8b1DSqVgZLcfAIGktxNQecFlfuK2O0XDn3lbyVTj66cpgATjWogT2Be33_Jn6xwGut_c0EOqf-HIXbeZXTIDuqw0BtUj3PEduzymA3umh9e3phwpVfezPWt1uNCSw8DTi-lhkXuetqs8VJOVqu5zuqEzUfpw_UNr1cecC1iWPMgMhYKjZ4L38_K0lc2kdoEBaBRUhiuaPQnUlOaFKhSSquV1hFh1hthAy3FKWstX5f2jHnC1xFyPNQY8kFeyiKGRBvlC7RRSquwza4aLmS6xgOntRTPGeYFxLJsi2Vt1tsQv1UwGL-TDYmdGxLCrnYnUKJZLdHsL4m2WacRRlZ_UKuMkM4klSDF-X_c44Lth9Sc4vpSOqy1fv-wlxhdrIsu201G4y7bG6bT-1nXqRUeJ5_pFx5gzK8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHOCCQIAYzx7gghTRNunSHBDaYDAYTAiBxK20ScoB2AYbQvwpfiN21g4QiBvXNooix_5sxy-ALSE5YmOaMy1kxCgwxFRaU0xkqQyMEJa7cW_nnVrrWpzeRDcT8F7WwlBaZYmJDqhNT9Mb-S61upIUg-L7_SdGU6MoulqO0BixRdu-vaLLNtg7OcT73Q7Do-bVQYsVUwWY5jUxZEFkrMg0Koco5lbmvrKx1CbIBMq9QotAI2RLTZ5IoHIprVZaR9QW3nAbaMlx30mYElTRWoGpRrNzcTl-1cEjCnRwRoWAnCt_9zG9t9xJiv9N9bkJAT8UgNNqR3MwW5ijXn3EP_MwYbsLUG-XD23eMfWzHniXLl-2KFPqemjoek1KlGQul84ar8kILct9Botw_S9EWYJKt9e1y-BxX0d406FGU1OkucxqItZG-RyxUWkVVmGnpEKiiz7kNA7jIUF_hEiWfCFZFbbGi_uj9hu_L2sQOcdLqGe2-9B7vksKEUwMwpMRORmMsTAiTl09fZpR4DhD7qrCWnkZSSHIg-ST7Vb-_r0J062r87Pk7KTTXoWZkFJfXNbLGlSGzy92HW2XYbZRMIwHt__Nox9rRgAc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgSIgLAgFiPHuAC1K0tkmX5oAQYxuPwYQQSNxKm6QcgA3YEOKv8euws3aAQNy4tlFVOc5nO_5sA2wJyREb05xpISNGiSGm0rpiIktlYISw3I17O-vWj67EyXV0PQHvZS0M0SpLTHRAbfqa7shr1OpKUg6K1_KCFnHebO89PjGaIEWZ1nKcxkhFOvbtFcO3we5xE_d6OwzbrcuDI1ZMGGCa18WQBZGxItNoKKKYW5n7ysZSmyATiAEKvQON8C01RSWByqW0WmkdUYt4w22gJcfvTsKURKsoKjDVaHXPL8Y3PPi7AoOdUVEg58qvPaR3lrtT438zg25awA9j4Cxcew5mC9fU2x_p0jxM2N4C7HfKSzfvkHpbD7wLx50tSpZ6Hjq9XotIk8zx6qzxWoyQs_zOYBGu_kUoS1Dp9Xt2GTzu6wh3PdTodoo0l1ldxNoonyNOKq3CKuyUUkh00ZOcRmPcJxibkMiSLyKrwtZ48eOoFcfvyxokzvES6p_tHvSfb5PiOCYGocqInJzHWBgRp662Ps0oiZyhplVhrdyMpDjUg-RTBVf-fr0J06ibyelxt7MKMyGxYBwBZg0qw-cXu45uzDDbKPTFg5v_VtEPCSoESA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+Graphs+Representation+for+Event-Related+E-News+Articles&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Lakshika%2C+M.V.P.T.&rft.au=Caldera%2C+H.A.&rft.date=2021-12-01&rft.issn=2504-4990&rft.eissn=2504-4990&rft.volume=3&rft.issue=4&rft.spage=802&rft.epage=818&rft_id=info:doi/10.3390%2Fmake3040040&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_make3040040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon |