Knowledge Graphs Representation for Event-Related E-News Articles

E-newspaper readers are overloaded with massive texts on e-news articles, and they usually mislead the reader who reads and understands information. Thus, there is an urgent need for a technology that can automatically represent the gist of these e-news articles more quickly. Currently, popular mach...

Full description

Saved in:
Bibliographic Details
Published inMachine learning and knowledge extraction Vol. 3; no. 4; pp. 802 - 818
Main Authors Lakshika, M.V.P.T., Caldera, H.A.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text
ISSN2504-4990
2504-4990
DOI10.3390/make3040040

Cover

More Information
Summary:E-newspaper readers are overloaded with massive texts on e-news articles, and they usually mislead the reader who reads and understands information. Thus, there is an urgent need for a technology that can automatically represent the gist of these e-news articles more quickly. Currently, popular machine learning approaches have greatly improved presentation accuracy compared to traditional methods, but they cannot be accommodated with the contextual information to acquire higher-level abstraction. Recent research efforts in knowledge representation using graph approaches are neither user-driven nor flexible to deviations in the data. Thus, there is a striking concentration on constructing knowledge graphs by combining the background information related to the subjects in text documents. We propose an enhanced representation of a scalable knowledge graph by automatically extracting the information from the corpus of e-news articles and determine whether a knowledge graph can be used as an efficient application in analyzing and generating knowledge representation from the extracted e-news corpus. This knowledge graph consists of a knowledge base built using triples that automatically produce knowledge representation from e-news articles. Inclusively, it has been observed that the proposed knowledge graph generates a comprehensive and precise knowledge representation for the corpus of e-news articles.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2504-4990
2504-4990
DOI:10.3390/make3040040