Color tunability in multilayer OLED based on DCM doped in a PVK matrix

In this work, we present our achievements in color tunability in novel multilayer organic light-emitting diodes (OLEDs) based on DCM (4-(Dicyanomethylene)-2-methyl-6-[p- (dimethylamino)styryl]-4H-pyran) as red emitter doped in a composite PVK:TPD holetransporting layer, DPVBi (4,4'-Bis(2,2-diph...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 558; no. 1; pp. 12028 - 7
Main Authors Petrova, P K, Ivanov, P I, Tomova, R L
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we present our achievements in color tunability in novel multilayer organic light-emitting diodes (OLEDs) based on DCM (4-(Dicyanomethylene)-2-methyl-6-[p- (dimethylamino)styryl]-4H-pyran) as red emitter doped in a composite PVK:TPD holetransporting layer, DPVBi (4,4'-Bis(2,2-diphenylvinyl)-1,1'-biphenyl) as a separate blue emitting layer, BAlq (aluminum bis(2-methyl-8-quinolinate)-4-phenylphenolate) as holeblocking layer and blue emitter at the same time, and Zn(BTz)2 (zinc bis(2-(2-hydroxyphenyl) benzothiazole)) as yellow emitter and electron transporting layer. By modification of the OLED structure and changing the DCM doped concentration in the matrix (in the range of 0 up to 5 %) the color tunability of OLED structures has been obtained. The efficiencies, luminance and chromaticity coordinates of the fabricated OLED structures have been specified.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/558/1/012028