Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping
In this paper, we study the solvability and generalized Ulam–Hyers (UH) stability of a nonlinear Atangana–Baleanu–Caputo (ABC) fractional coupled system with a Laplacian operator and impulses. First, this system becomes a nonimpulsive system by applying an appropriate transformation. Secondly, the e...
Saved in:
Published in | Advances in continuous and discrete models Vol. 2024; no. 1; p. 5 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
30.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we study the solvability and generalized Ulam–Hyers (UH) stability of a nonlinear Atangana–Baleanu–Caputo (ABC) fractional coupled system with a Laplacian operator and impulses. First, this system becomes a nonimpulsive system by applying an appropriate transformation. Secondly, the existence and uniqueness of the solution are obtained by an F-contractive operator and a fixed-point theorem on metric space. Simultaneously, the generalized UH-stability is established based on nonlinear analysis methods. Thirdly, a novel numerical simulation algorithm is provided. Finally, an example is used to illustrate the correctness and availability of the main results. Our study is a beneficial exploration of the dynamic properties of viscoelastic turbulence problems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2731-4235 1687-1839 2731-4235 1687-1847 |
DOI: | 10.1186/s13662-024-03801-y |