Novel algorithms based on forward-backward splitting technique: effective methods for regression and classification

In this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for nonsmooth convex minimization. We provide a thorough convergence analysis, emphasizing the new algorithms and contrasting them with existing ones. Our findings are validated through a numerical example. The pract...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 90; no. 4; pp. 869 - 890
Main Authors Atalan, Yunus, Hacıoğlu, Emirhan, Ertürk, Müzeyyen, Gürsoy, Faik, Milovanović, Gradimir V.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for nonsmooth convex minimization. We provide a thorough convergence analysis, emphasizing the new algorithms and contrasting them with existing ones. Our findings are validated through a numerical example. The practical utility of these algorithms in real-world applications, including machine learning for tasks such as classification, regression, and image deblurring reveal that these algorithms consistently approach optimal solutions with fewer iterations, highlighting their efficiency in real-world scenarios.
AbstractList In this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for nonsmooth convex minimization. We provide a thorough convergence analysis, emphasizing the new algorithms and contrasting them with existing ones. Our findings are validated through a numerical example. The practical utility of these algorithms in real-world applications, including machine learning for tasks such as classification, regression, and image deblurring reveal that these algorithms consistently approach optimal solutions with fewer iterations, highlighting their efficiency in real-world scenarios.
Author Atalan, Yunus
Milovanović, Gradimir V.
Hacıoğlu, Emirhan
Gürsoy, Faik
Ertürk, Müzeyyen
Author_xml – sequence: 1
  givenname: Yunus
  surname: Atalan
  fullname: Atalan, Yunus
  organization: Department of Mathematics, Aksaray University
– sequence: 2
  givenname: Emirhan
  orcidid: 0000-0003-0195-1935
  surname: Hacıoğlu
  fullname: Hacıoğlu, Emirhan
  email: emirhanhacioglu@hotmail.com
  organization: Department of Mathematics, Trakya University
– sequence: 3
  givenname: Müzeyyen
  surname: Ertürk
  fullname: Ertürk, Müzeyyen
  organization: Department of Mathematics, Adiyaman University
– sequence: 4
  givenname: Faik
  surname: Gürsoy
  fullname: Gürsoy, Faik
  organization: Department of Mathematics, Adiyaman University
– sequence: 5
  givenname: Gradimir V.
  surname: Milovanović
  fullname: Milovanović, Gradimir V.
  organization: Serbian Academy of Sciences and Arts, Faculty of Science and Mathematics, University of Niš
BookMark eNp9kMtqGzEUhkVJoY7bF-hK0PWk50ijsaa7YJK0YNJNuhayLrbc8ciR5Ji-fWS7EMjCq3Ph_87lvyZXYxwdIV8RbhBg9j0jyF42wNoGsGWiOXwgExQz3rAeuysygb42BQB-Itc5bwCgl4JNSH6ML26geljFFMp6m-lSZ2dpHKmP6aCTbZba_D0mNO-GUEoYV7Q4sx7D8979oM57Z0p4cXTryjrafORocqvkcg51jB4tNYOuhQ9Gl9r6TD56PWT35X-ckj_3d0_zn83i98Ov-e2iMbzjpfGttMilFh6N7Bn31uml7zu0rRQeRDezpm9bw7SbtSBM56sGGCw5osXe8yn5dp67S7HemovaxH0a60rFkaFE0WFXVeysMinmnJxXuxS2Ov1TCOporjqbq6q56mSuOlRIvoNMKKfnStJhuIzyM5rrnnHl0ttVF6hXcxST0Q
CitedBy_id crossref_primary_10_1186_s13660_025_03263_0
Cites_doi 10.1007/s10589-017-9909-6
10.1007/BF01109805
10.1016/S0377-0427(00)00360-5
10.37193/CMI.2016.01.04
10.1137/050626090
10.24193/fpt-ro.2017.2.50
10.1007/s40065-018-0236-2
10.1137/16M1073741
10.1137/0314056
10.1007/s10957-015-0746-4
10.1006/jmaa.2000.7042
10.22436/jnsa.009.05.72
10.1016/0022-247X(76)90152-9
10.1137/080716542
10.1080/02331934.2017.1411485
10.1007/s11075-019-00706-w
10.1090/S0002-9939-1953-0054846-3
10.1016/S0252-9602(12)60127-1
10.1090/S0002-9939-1991-1086345-8
10.1002/zamm.19670470202
10.1007/978-3-319-48311-5
10.1007/s11075-015-0030-6
10.1080/02331934.2019.1702040
10.2298/FIL1610829G
10.1007/978-0-387-70914-7
10.1109/ICIP.2008.4711847
10.3390/sym10110563
10.1016/j.acha.2012.08.004
10.1007/978-1-4613-0299-5_1
10.1007/s10796-006-8779-8
10.1090/S0002-9939-1974-0336469-5
10.1080/02331934.2012.733883
10.1137/0716071
10.1186/s13660-019-2097-4
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10898-024-01425-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 890
ExternalDocumentID 10_1007_s10898_024_01425_w
GrantInformation_xml – fundername: Trakya University
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c363t-f48d138a5f1c8923fdeabf961d485f0567dc944c2ae7405c6f23f020b311d19f3
IEDL.DBID U2A
ISSN 0925-5001
IngestDate Sat Aug 16 21:43:11 EDT 2025
Tue Jul 01 00:53:03 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Fri Feb 21 02:37:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cocoercive mappings
Iterative algorithm
,
Nonexpansive mappings
Relaxed
Variational inequalities
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-f48d138a5f1c8923fdeabf961d485f0567dc944c2ae7405c6f23f020b311d19f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0195-1935
OpenAccessLink https://link.springer.com/10.1007/s10898-024-01425-w
PQID 3121815616
PQPubID 29930
PageCount 22
ParticipantIDs proquest_journals_3121815616
crossref_primary_10_1007_s10898_024_01425_w
crossref_citationtrail_10_1007_s10898_024_01425_w
springer_journals_10_1007_s10898_024_01425_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WengXFixed point iteration for local strictly pseudocontractive mappingProc. Am. Math. Soc.1991113372773110.1090/S0002-9939-1991-1086345-8
GürsoyFErtürkMAbbasMA Picard-type iterative algorithm for general variational inequalities and nonexpansive mappingsNumer. Algorithms2020833867883406435610.1007/s11075-019-00706-w
ZongCTangYChoYJConvergence analysis of an inexact three-operator splitting algorithmSymmetry2018101156310.3390/sym10110563
BrowderFEConvergence theorems for sequences of nonlinear operators in Banach spacesMath. Z.1967100320122521514110.1007/BF01109805
Osei-BrysonKMGilesKSplitting methods for decision tree induction: An exploration of the relative performance of two entropy-based familiesInf. Syst. Front.20068319520910.1007/s10796-006-8779-8
Milovanović, G.V.: Numerical Analysis, Part I, Naučna Knjiga, Beograd, 1991 (Serbian)
CombettesPLVuBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization201463912891318322584510.1080/02331934.2012.733883
MannWRMean value methods in iterationProc. Am. Math. Soc.195345065105484610.1090/S0002-9939-1953-0054846-3
NoorMANew approximation schemes for general variational inequalitiesJ. Math. Anal. Appl.2000251217229179040610.1006/jmaa.2000.7042
SalzoSThe variable metric forward-backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.201727421532181370789910.1137/16M1073741
Bioucas-Dias, J.M., Figueiredo, M.A.: An iterative algorithm for linear inverse problems with compound regularizers. Proceedings – International Conference on Image Processing, ICIP. (pp. 685–688) (2008). https://doi.org/10.1109/ICIP.2008.4711847
DunnJCConvexity, monotonicity, and gradient processes in Hilbert spaceJ. Math. Anal. Appl.19765314515838817610.1016/0022-247X(76)90152-9
PholasaNCholamjiakPChoYJModified forward-backward splitting methods for accretive operators in Banach spacesJ. Nonlinear Sci. Appl.20169527662778349114410.22436/jnsa.009.05.72
SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory20111211872042797080
VoroninSWoerdemanHJA new iterative firm-thresholding algorithm for inverse problems with sparsity constraintsAppl. Comput. Harmon. Anal.2013351151164305375110.1016/j.acha.2012.08.004
BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces20172BerlinSpringer10.1007/978-3-319-48311-5
LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791696497955131910.1137/0716071
BerindeVPicard iteration converges faster than Mann iteration for a class of quasi-contractive operatorsFixed Point Theory Appl.20042971052086709
Chambolle, A., Dossal, C.: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm.” J. Optim. Theory Appl. 166(3), 968–982 (2015)
CholamjiakPA generalized forward–backward splitting method for solving quasi inclusion problems in Banach spacesNumer. Algorithms2016714915932347974710.1007/s11075-015-0030-6
DadashiVPostolacheMForward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operatorsArab. J. Math.2020918999406289510.1007/s40065-018-0236-2
SahuDRYaoJCVermaMShuklaKKConvergence rate analysis of proximal gradient methods with applications to composite minimization problemsOptimization202170175100419578210.1080/02331934.2019.1702040
ChoSYKangSMApproximation of common solutions of variational inequalities via strict pseudocontractionsActa Math. Sci.20123216071618292744810.1016/S0252-9602(12)60127-1
Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)
CombettesPLWajsRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005411681200220384910.1137/050626090
LatafatPPatrinosPAsymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operatorsComput. Optim. Appl.20176815793368290810.1007/s10589-017-9909-6
AgarwalRPO’ReganDSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.20078161792314666
Cui, F., Tang, Y., Zhu, C.: Convergence analysis of a variable metric forward-backward splitting algorithm with applications. J. Inequal. Appl. 2019(1), 141, 27 pp. (2019)
KarakayaVAtalanYDoganKBouzaraNEHSome fixed point results for a new three steps iteration process in Banach spacesFixed Point Theory2017182625640370116510.24193/fpt-ro.2017.2.50
BrezinskiCConvergence acceleration during the 20th centuryJ. Comput. Appl. Math.20001221–2121179464910.1016/S0377-0427(00)00360-5
AtalanYOn a new fixed point iterative algorithm for general variational inequalitiesJ. Nonlinear Convex Anal.20192011237123864055652
GürsoyFSahuDRAnsariQHS-iteration process for variational inclusions and its rate of convergenceJ. Nonlinear Convex Anal.201617175317673562626
BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.200921183202248652710.1137/080716542
WangYWangFStrong convergence of the forward-backward splitting method with multiple parameters in Hilbert spacesOptimization2018674493505376000310.1080/02331934.2017.1411485
PicardEMémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successivesJ. de Math. Pur. et App.189046145210
BerindeVOn a notion of rapidity of convergence used in the study of fixed point iterative methodsCreat. Math. Inform.2016252940355867110.37193/CMI.2016.01.04
IshikawaSFixed points by a new iteration methodProc. Am. Math. Soc.19744414715033646910.1090/S0002-9939-1974-0336469-5
Ansari, Q.H.: Vector equilibrium problems and vector variational inequalities. In Vector Variational Inequalities and Vector Equilibria, Springer, Boston, MA (2000)
RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control. Optim.19761487789841048310.1137/0314056
GürsoyFA Picard-S iterative method for approximating fixed point of weak-contraction mappingsFilomat2016301028292845358340810.2298/FIL1610829G
OstrowskiAThe round-off stability of iterationsZAMM-J. Appl. Math. Mech.1967472778121673110.1002/zamm.19670470202
KinderlehrerDStampacchiaGAn Introduction to Variational Inequalities and Their Applications1980New YorkAcademic Press
F Gürsoy (1425_CR28) 2016; 30
PL Lions (1425_CR8) 1979; 16
V Berinde (1425_CR35) 2016; 25
RT Rockafellar (1425_CR9) 1976; 14
1425_CR3
N Pholasa (1425_CR14) 2016; 9
RP Agarwal (1425_CR27) 2007; 8
1425_CR36
1425_CR38
1425_CR15
MA Noor (1425_CR26) 2000; 251
C Zong (1425_CR18) 2018; 10
C Brezinski (1425_CR33) 2000; 122
1425_CR39
Y Atalan (1425_CR41) 2019; 20
F Gürsoy (1425_CR42) 2020; 83
D Kinderlehrer (1425_CR1) 1980
SY Cho (1425_CR2) 2012; 32
JC Dunn (1425_CR10) 1976; 53
V Dadashi (1425_CR17) 2020; 9
HH Bauschke (1425_CR30) 2017
Y Wang (1425_CR19) 2018; 67
P Latafat (1425_CR13) 2017; 68
E Picard (1425_CR23) 1890; 4
V Karakaya (1425_CR29) 2017; 18
FE Browder (1425_CR21) 1967; 100
DR Sahu (1425_CR6) 2021; 70
WR Mann (1425_CR24) 1953; 4
S Salzo (1425_CR12) 2017; 27
DR Sahu (1425_CR22) 2011; 12
A Beck (1425_CR37) 2009; 2
PL Combettes (1425_CR11) 2014; 63
V Berinde (1425_CR34) 2004; 2
A Ostrowski (1425_CR32) 1967; 47
F Gürsoy (1425_CR4) 2016; 17
X Weng (1425_CR31) 1991; 113
PL Combettes (1425_CR5) 2005; 4
KM Osei-Bryson (1425_CR7) 2006; 8
P Cholamjiak (1425_CR16) 2016; 71
1425_CR20
S Ishikawa (1425_CR25) 1974; 44
S Voronin (1425_CR40) 2013; 35
References_xml – reference: KinderlehrerDStampacchiaGAn Introduction to Variational Inequalities and Their Applications1980New YorkAcademic Press
– reference: LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791696497955131910.1137/0716071
– reference: CholamjiakPA generalized forward–backward splitting method for solving quasi inclusion problems in Banach spacesNumer. Algorithms2016714915932347974710.1007/s11075-015-0030-6
– reference: CombettesPLWajsRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005411681200220384910.1137/050626090
– reference: PholasaNCholamjiakPChoYJModified forward-backward splitting methods for accretive operators in Banach spacesJ. Nonlinear Sci. Appl.20169527662778349114410.22436/jnsa.009.05.72
– reference: OstrowskiAThe round-off stability of iterationsZAMM-J. Appl. Math. Mech.1967472778121673110.1002/zamm.19670470202
– reference: LatafatPPatrinosPAsymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operatorsComput. Optim. Appl.20176815793368290810.1007/s10589-017-9909-6
– reference: MannWRMean value methods in iterationProc. Am. Math. Soc.195345065105484610.1090/S0002-9939-1953-0054846-3
– reference: IshikawaSFixed points by a new iteration methodProc. Am. Math. Soc.19744414715033646910.1090/S0002-9939-1974-0336469-5
– reference: Chambolle, A., Dossal, C.: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm.” J. Optim. Theory Appl. 166(3), 968–982 (2015)
– reference: Ansari, Q.H.: Vector equilibrium problems and vector variational inequalities. In Vector Variational Inequalities and Vector Equilibria, Springer, Boston, MA (2000)
– reference: GürsoyFErtürkMAbbasMA Picard-type iterative algorithm for general variational inequalities and nonexpansive mappingsNumer. Algorithms2020833867883406435610.1007/s11075-019-00706-w
– reference: BrowderFEConvergence theorems for sequences of nonlinear operators in Banach spacesMath. Z.1967100320122521514110.1007/BF01109805
– reference: BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.200921183202248652710.1137/080716542
– reference: WangYWangFStrong convergence of the forward-backward splitting method with multiple parameters in Hilbert spacesOptimization2018674493505376000310.1080/02331934.2017.1411485
– reference: NoorMANew approximation schemes for general variational inequalitiesJ. Math. Anal. Appl.2000251217229179040610.1006/jmaa.2000.7042
– reference: CombettesPLVuBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization201463912891318322584510.1080/02331934.2012.733883
– reference: SalzoSThe variable metric forward-backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.201727421532181370789910.1137/16M1073741
– reference: RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control. Optim.19761487789841048310.1137/0314056
– reference: SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory20111211872042797080
– reference: ZongCTangYChoYJConvergence analysis of an inexact three-operator splitting algorithmSymmetry2018101156310.3390/sym10110563
– reference: Milovanović, G.V.: Numerical Analysis, Part I, Naučna Knjiga, Beograd, 1991 (Serbian)
– reference: Bioucas-Dias, J.M., Figueiredo, M.A.: An iterative algorithm for linear inverse problems with compound regularizers. Proceedings – International Conference on Image Processing, ICIP. (pp. 685–688) (2008). https://doi.org/10.1109/ICIP.2008.4711847
– reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces20172BerlinSpringer10.1007/978-3-319-48311-5
– reference: DadashiVPostolacheMForward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operatorsArab. J. Math.2020918999406289510.1007/s40065-018-0236-2
– reference: KarakayaVAtalanYDoganKBouzaraNEHSome fixed point results for a new three steps iteration process in Banach spacesFixed Point Theory2017182625640370116510.24193/fpt-ro.2017.2.50
– reference: Cui, F., Tang, Y., Zhu, C.: Convergence analysis of a variable metric forward-backward splitting algorithm with applications. J. Inequal. Appl. 2019(1), 141, 27 pp. (2019)
– reference: AtalanYOn a new fixed point iterative algorithm for general variational inequalitiesJ. Nonlinear Convex Anal.20192011237123864055652
– reference: DunnJCConvexity, monotonicity, and gradient processes in Hilbert spaceJ. Math. Anal. Appl.19765314515838817610.1016/0022-247X(76)90152-9
– reference: Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)
– reference: GürsoyFA Picard-S iterative method for approximating fixed point of weak-contraction mappingsFilomat2016301028292845358340810.2298/FIL1610829G
– reference: AgarwalRPO’ReganDSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.20078161792314666
– reference: SahuDRYaoJCVermaMShuklaKKConvergence rate analysis of proximal gradient methods with applications to composite minimization problemsOptimization202170175100419578210.1080/02331934.2019.1702040
– reference: BerindeVOn a notion of rapidity of convergence used in the study of fixed point iterative methodsCreat. Math. Inform.2016252940355867110.37193/CMI.2016.01.04
– reference: PicardEMémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successivesJ. de Math. Pur. et App.189046145210
– reference: BerindeVPicard iteration converges faster than Mann iteration for a class of quasi-contractive operatorsFixed Point Theory Appl.20042971052086709
– reference: ChoSYKangSMApproximation of common solutions of variational inequalities via strict pseudocontractionsActa Math. Sci.20123216071618292744810.1016/S0252-9602(12)60127-1
– reference: BrezinskiCConvergence acceleration during the 20th centuryJ. Comput. Appl. Math.20001221–2121179464910.1016/S0377-0427(00)00360-5
– reference: WengXFixed point iteration for local strictly pseudocontractive mappingProc. Am. Math. Soc.1991113372773110.1090/S0002-9939-1991-1086345-8
– reference: VoroninSWoerdemanHJA new iterative firm-thresholding algorithm for inverse problems with sparsity constraintsAppl. Comput. Harmon. Anal.2013351151164305375110.1016/j.acha.2012.08.004
– reference: Osei-BrysonKMGilesKSplitting methods for decision tree induction: An exploration of the relative performance of two entropy-based familiesInf. Syst. Front.20068319520910.1007/s10796-006-8779-8
– reference: GürsoyFSahuDRAnsariQHS-iteration process for variational inclusions and its rate of convergenceJ. Nonlinear Convex Anal.201617175317673562626
– volume: 68
  start-page: 57
  issue: 1
  year: 2017
  ident: 1425_CR13
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9909-6
– volume: 100
  start-page: 201
  issue: 3
  year: 1967
  ident: 1425_CR21
  publication-title: Math. Z.
  doi: 10.1007/BF01109805
– volume: 122
  start-page: 1
  issue: 1–2
  year: 2000
  ident: 1425_CR33
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00360-5
– volume: 25
  start-page: 29
  year: 2016
  ident: 1425_CR35
  publication-title: Creat. Math. Inform.
  doi: 10.37193/CMI.2016.01.04
– volume: 4
  start-page: 1168
  year: 2005
  ident: 1425_CR5
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– volume: 8
  start-page: 61
  issue: 1
  year: 2007
  ident: 1425_CR27
  publication-title: J. Nonlinear Convex Anal.
– volume: 18
  start-page: 625
  issue: 2
  year: 2017
  ident: 1425_CR29
  publication-title: Fixed Point Theory
  doi: 10.24193/fpt-ro.2017.2.50
– volume: 9
  start-page: 89
  issue: 1
  year: 2020
  ident: 1425_CR17
  publication-title: Arab. J. Math.
  doi: 10.1007/s40065-018-0236-2
– volume: 17
  start-page: 1753
  year: 2016
  ident: 1425_CR4
  publication-title: J. Nonlinear Convex Anal.
– volume: 27
  start-page: 2153
  issue: 4
  year: 2017
  ident: 1425_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1073741
– volume: 14
  start-page: 877
  year: 1976
  ident: 1425_CR9
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/0314056
– ident: 1425_CR38
  doi: 10.1007/s10957-015-0746-4
– volume: 251
  start-page: 217
  year: 2000
  ident: 1425_CR26
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2000.7042
– volume: 9
  start-page: 2766
  issue: 5
  year: 2016
  ident: 1425_CR14
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.009.05.72
– volume: 12
  start-page: 187
  issue: 1
  year: 2011
  ident: 1425_CR22
  publication-title: Fixed Point Theory
– volume: 53
  start-page: 145
  year: 1976
  ident: 1425_CR10
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(76)90152-9
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 1425_CR37
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume-title: An Introduction to Variational Inequalities and Their Applications
  year: 1980
  ident: 1425_CR1
– volume: 67
  start-page: 493
  issue: 4
  year: 2018
  ident: 1425_CR19
  publication-title: Optimization
  doi: 10.1080/02331934.2017.1411485
– volume: 83
  start-page: 867
  issue: 3
  year: 2020
  ident: 1425_CR42
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-019-00706-w
– volume: 4
  start-page: 506
  year: 1953
  ident: 1425_CR24
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1953-0054846-3
– volume: 20
  start-page: 2371
  issue: 11
  year: 2019
  ident: 1425_CR41
  publication-title: J. Nonlinear Convex Anal.
– volume: 32
  start-page: 1607
  year: 2012
  ident: 1425_CR2
  publication-title: Acta Math. Sci.
  doi: 10.1016/S0252-9602(12)60127-1
– volume: 113
  start-page: 727
  issue: 3
  year: 1991
  ident: 1425_CR31
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1991-1086345-8
– volume: 47
  start-page: 77
  issue: 2
  year: 1967
  ident: 1425_CR32
  publication-title: ZAMM-J. Appl. Math. Mech.
  doi: 10.1002/zamm.19670470202
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2017
  ident: 1425_CR30
  doi: 10.1007/978-3-319-48311-5
– volume: 71
  start-page: 915
  issue: 4
  year: 2016
  ident: 1425_CR16
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-015-0030-6
– volume: 70
  start-page: 75
  issue: 1
  year: 2021
  ident: 1425_CR6
  publication-title: Optimization
  doi: 10.1080/02331934.2019.1702040
– volume: 30
  start-page: 2829
  issue: 10
  year: 2016
  ident: 1425_CR28
  publication-title: Filomat
  doi: 10.2298/FIL1610829G
– ident: 1425_CR36
– ident: 1425_CR20
  doi: 10.1007/978-0-387-70914-7
– ident: 1425_CR39
  doi: 10.1109/ICIP.2008.4711847
– volume: 10
  start-page: 563
  issue: 11
  year: 2018
  ident: 1425_CR18
  publication-title: Symmetry
  doi: 10.3390/sym10110563
– volume: 35
  start-page: 151
  issue: 1
  year: 2013
  ident: 1425_CR40
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2012.08.004
– ident: 1425_CR3
  doi: 10.1007/978-1-4613-0299-5_1
– volume: 8
  start-page: 195
  issue: 3
  year: 2006
  ident: 1425_CR7
  publication-title: Inf. Syst. Front.
  doi: 10.1007/s10796-006-8779-8
– volume: 2
  start-page: 97
  year: 2004
  ident: 1425_CR34
  publication-title: Fixed Point Theory Appl.
– volume: 44
  start-page: 147
  year: 1974
  ident: 1425_CR25
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1974-0336469-5
– volume: 63
  start-page: 1289
  issue: 9
  year: 2014
  ident: 1425_CR11
  publication-title: Optimization
  doi: 10.1080/02331934.2012.733883
– volume: 4
  start-page: 145
  issue: 6
  year: 1890
  ident: 1425_CR23
  publication-title: J. de Math. Pur. et App.
– volume: 16
  start-page: 964
  year: 1979
  ident: 1425_CR8
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– ident: 1425_CR15
  doi: 10.1186/s13660-019-2097-4
SSID ssj0009852
Score 2.4121966
Snippet In this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for nonsmooth convex minimization. We provide a thorough convergence...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 869
SubjectTerms Algorithms
Classification
Computer Science
Hilbert space
Machine learning
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Real Functions
Splitting
Title Novel algorithms based on forward-backward splitting technique: effective methods for regression and classification
URI https://link.springer.com/article/10.1007/s10898-024-01425-w
https://www.proquest.com/docview/3121815616
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VuLQHHmkrwiPaQw9U1FLWa6_X3EJEilqRE5HgZO3LUCl1UBzg7zO7XidQAVJPtuVZHzyzO5-933wD8M0yLRHo2ijlykRJZnUkNWeR5SqXfdXPlHLVyBdjfj5Jfl2lV6EorG7Z7u2WpF-pnxW7CVcOFjvWBEZa9LgGG6n7dsconsSDldSu8H12-jnapLgKh1KZ15_xMh2tMOY_26I-24y2YTPARDJo_LoDH2zVga22BQMJM7IDn57pCeLVxVKEte7ATrCqyVEQl_7-Gerx7MFOiZzezOZ_Frd_a-LymCGziiB89RRa5X7p4QmpEaB6WjRZKr2ekIYAgmskaZpP124cmdubhlBbEVkZoh0mdyQk7_cvMBmdXQ7Po9B4IdKMs0VUJsJQJmRaUi0QAZbGSlXmnJpEpCVCpszoPEl0LG2GgE_zEm0QdypGqaF5yb7CejWr7C6QmGU0V06EUKcJjTEzyExYnRuVlEwI2gXavv9CB1Vy1xxjWqz0lJ3PCvRZ4X1WPHbheDnmrtHkeNf6oHVrEeZnXTDqoA1iR96FH62rV7ffftre_5nvw8fYRZvnvxzA-mJ-bw8RxSxUDzYGo9PTsTv-vP591oO1IR_2fCg_ASGN7rM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4a3WFwGGsB0TGGDzsMQaQ6dhyH21RRdWztqZV6i_wrA6mkqCnrv7_nxG1HBUi7JcqzD3nPfl_i730P4MIxoxDouigR2kY8dSZSRrDICZ2pnu6lWvtq5NFYDKf82yyZBZkcXwuzd37vS9ykLwKLPVcC4ytaP4NDjl_Knr7XF_2dwK6su-v0MrRJcO8NBTJ_n-PPJLRDlnuHoXWOGZzAcQCH5KrxZhsOXNmBl5vGCySsww68eKQiiHejrfRq1YF2sKrIZZCU_vgKqvHi3s2Jmt8tlj9W339WxGcvSxYlQdBaE2e1_5GHF6RCWFqToclW3_ULaWgfuDOSpuV05ceRpbtraLQlUaUlxiNxTz2qvf0apoOvk_4wCu0WIsMEW0UFl5YyqZKCGom4r7BO6SIT1HKZFAiUUmsyzk2sXIowz4gCbRBtakappVnB3kCrXJTuLZCYpTTTXnrQJJzGmA9UKp3JrOYFk5J2gW7ef26CFrlviTHPdyrK3mc5-iyvfZavu_BpO-ZXo8TxX-uzjVvzsCqrnFEPaBAxii583rh69_jfs50-zfwDHA0no9v89np88w6exz7yagbMGbRWy9_uPeKYlT6vA_gBRyvpmA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VKlX0QMu2iKXQ-sCBCiLWceI4vVXbrvhc9VAkbpE_aaUlizYp_H3GTrK7oFKpt0QZ-5AZe17iN28A9izTEoGujVKuTJRkVkdScxZZrnI5UINMKV-NfDHmx5fJ6VV6tVTFH9ju3ZFkU9PgVZrK-ujWuKOlwjfhS8Niz6DAqIvuV-AlfqmEg9ohHy5kd0XouTPI0SbFHbktm_n7HI9T0wJvPjkiDZln9BbWW8hIvjY-3oAXtuzBm64dA2lXZw9eL2kL4t3FXJC16sFGa1WR_VZo-vM7qMbTOzshcnI9nf2uf91UxOc0Q6YlQSgb6LTK_97DC1IhWA0UaTJXff1CGjII7pekaURd-XFkZq8bcm1JZGmI9vjcE5JCDLyHy9H3n8PjqG3CEGnGWR25RBjKhEwd1QLRoDNWKpdzahKROoRPmdF5kuhY2gzBn-YObRCDKkapobljm7BaTku7BSRmGc2VFyTUaUJjzBIyE1bnRiWOCUH7QLv3X-hWodw3ypgUC21l77MCfVYEnxX3fTiYj7lt9Dn-ab3TubVo12pVMOphDuJI3ofDztWLx8_Ptv1_5p_g1Y9vo-L8ZHz2AdZiH3iBFrMDq_Xsj91FcFOrjyF-HwCGaPHf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+algorithms+based+on+forward-backward+splitting+technique%3A+effective+methods+for+regression+and+classification&rft.jtitle=Journal+of+global+optimization&rft.au=Atalan%2C+Yunus&rft.au=Hac%C4%B1o%C4%9Flu%2C+Emirhan&rft.au=Ert%C3%BCrk%2C+M%C3%BCzeyyen&rft.au=G%C3%BCrsoy%2C+Faik&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=90&rft.issue=4&rft.spage=869&rft.epage=890&rft_id=info:doi/10.1007%2Fs10898-024-01425-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon