Novel algorithms based on forward-backward splitting technique: effective methods for regression and classification
In this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for nonsmooth convex minimization. We provide a thorough convergence analysis, emphasizing the new algorithms and contrasting them with existing ones. Our findings are validated through a numerical example. The pract...
Saved in:
Published in | Journal of global optimization Vol. 90; no. 4; pp. 869 - 890 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for nonsmooth convex minimization. We provide a thorough convergence analysis, emphasizing the new algorithms and contrasting them with existing ones. Our findings are validated through a numerical example. The practical utility of these algorithms in real-world applications, including machine learning for tasks such as classification, regression, and image deblurring reveal that these algorithms consistently approach optimal solutions with fewer iterations, highlighting their efficiency in real-world scenarios. |
---|---|
AbstractList | In this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for nonsmooth convex minimization. We provide a thorough convergence analysis, emphasizing the new algorithms and contrasting them with existing ones. Our findings are validated through a numerical example. The practical utility of these algorithms in real-world applications, including machine learning for tasks such as classification, regression, and image deblurring reveal that these algorithms consistently approach optimal solutions with fewer iterations, highlighting their efficiency in real-world scenarios. |
Author | Atalan, Yunus Milovanović, Gradimir V. Hacıoğlu, Emirhan Gürsoy, Faik Ertürk, Müzeyyen |
Author_xml | – sequence: 1 givenname: Yunus surname: Atalan fullname: Atalan, Yunus organization: Department of Mathematics, Aksaray University – sequence: 2 givenname: Emirhan orcidid: 0000-0003-0195-1935 surname: Hacıoğlu fullname: Hacıoğlu, Emirhan email: emirhanhacioglu@hotmail.com organization: Department of Mathematics, Trakya University – sequence: 3 givenname: Müzeyyen surname: Ertürk fullname: Ertürk, Müzeyyen organization: Department of Mathematics, Adiyaman University – sequence: 4 givenname: Faik surname: Gürsoy fullname: Gürsoy, Faik organization: Department of Mathematics, Adiyaman University – sequence: 5 givenname: Gradimir V. surname: Milovanović fullname: Milovanović, Gradimir V. organization: Serbian Academy of Sciences and Arts, Faculty of Science and Mathematics, University of Niš |
BookMark | eNp9kMtqGzEUhkVJoY7bF-hK0PWk50ijsaa7YJK0YNJNuhayLrbc8ciR5Ji-fWS7EMjCq3Ph_87lvyZXYxwdIV8RbhBg9j0jyF42wNoGsGWiOXwgExQz3rAeuysygb42BQB-Itc5bwCgl4JNSH6ML26geljFFMp6m-lSZ2dpHKmP6aCTbZba_D0mNO-GUEoYV7Q4sx7D8979oM57Z0p4cXTryjrafORocqvkcg51jB4tNYOuhQ9Gl9r6TD56PWT35X-ckj_3d0_zn83i98Ov-e2iMbzjpfGttMilFh6N7Bn31uml7zu0rRQeRDezpm9bw7SbtSBM56sGGCw5osXe8yn5dp67S7HemovaxH0a60rFkaFE0WFXVeysMinmnJxXuxS2Ov1TCOporjqbq6q56mSuOlRIvoNMKKfnStJhuIzyM5rrnnHl0ttVF6hXcxST0Q |
CitedBy_id | crossref_primary_10_1186_s13660_025_03263_0 |
Cites_doi | 10.1007/s10589-017-9909-6 10.1007/BF01109805 10.1016/S0377-0427(00)00360-5 10.37193/CMI.2016.01.04 10.1137/050626090 10.24193/fpt-ro.2017.2.50 10.1007/s40065-018-0236-2 10.1137/16M1073741 10.1137/0314056 10.1007/s10957-015-0746-4 10.1006/jmaa.2000.7042 10.22436/jnsa.009.05.72 10.1016/0022-247X(76)90152-9 10.1137/080716542 10.1080/02331934.2017.1411485 10.1007/s11075-019-00706-w 10.1090/S0002-9939-1953-0054846-3 10.1016/S0252-9602(12)60127-1 10.1090/S0002-9939-1991-1086345-8 10.1002/zamm.19670470202 10.1007/978-3-319-48311-5 10.1007/s11075-015-0030-6 10.1080/02331934.2019.1702040 10.2298/FIL1610829G 10.1007/978-0-387-70914-7 10.1109/ICIP.2008.4711847 10.3390/sym10110563 10.1016/j.acha.2012.08.004 10.1007/978-1-4613-0299-5_1 10.1007/s10796-006-8779-8 10.1090/S0002-9939-1974-0336469-5 10.1080/02331934.2012.733883 10.1137/0716071 10.1186/s13660-019-2097-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10898-024-01425-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Computer Science |
EISSN | 1573-2916 |
EndPage | 890 |
ExternalDocumentID | 10_1007_s10898_024_01425_w |
GrantInformation_xml | – fundername: Trakya University |
GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c363t-f48d138a5f1c8923fdeabf961d485f0567dc944c2ae7405c6f23f020b311d19f3 |
IEDL.DBID | U2A |
ISSN | 0925-5001 |
IngestDate | Sat Aug 16 21:43:11 EDT 2025 Tue Jul 01 00:53:03 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Fri Feb 21 02:37:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | cocoercive mappings Iterative algorithm , Nonexpansive mappings Relaxed Variational inequalities |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-f48d138a5f1c8923fdeabf961d485f0567dc944c2ae7405c6f23f020b311d19f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0195-1935 |
OpenAccessLink | https://link.springer.com/10.1007/s10898-024-01425-w |
PQID | 3121815616 |
PQPubID | 29930 |
PageCount | 22 |
ParticipantIDs | proquest_journals_3121815616 crossref_primary_10_1007_s10898_024_01425_w crossref_citationtrail_10_1007_s10898_024_01425_w springer_journals_10_1007_s10898_024_01425_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-00 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | WengXFixed point iteration for local strictly pseudocontractive mappingProc. Am. Math. Soc.1991113372773110.1090/S0002-9939-1991-1086345-8 GürsoyFErtürkMAbbasMA Picard-type iterative algorithm for general variational inequalities and nonexpansive mappingsNumer. Algorithms2020833867883406435610.1007/s11075-019-00706-w ZongCTangYChoYJConvergence analysis of an inexact three-operator splitting algorithmSymmetry2018101156310.3390/sym10110563 BrowderFEConvergence theorems for sequences of nonlinear operators in Banach spacesMath. Z.1967100320122521514110.1007/BF01109805 Osei-BrysonKMGilesKSplitting methods for decision tree induction: An exploration of the relative performance of two entropy-based familiesInf. Syst. Front.20068319520910.1007/s10796-006-8779-8 Milovanović, G.V.: Numerical Analysis, Part I, Naučna Knjiga, Beograd, 1991 (Serbian) CombettesPLVuBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization201463912891318322584510.1080/02331934.2012.733883 MannWRMean value methods in iterationProc. Am. Math. Soc.195345065105484610.1090/S0002-9939-1953-0054846-3 NoorMANew approximation schemes for general variational inequalitiesJ. Math. Anal. Appl.2000251217229179040610.1006/jmaa.2000.7042 SalzoSThe variable metric forward-backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.201727421532181370789910.1137/16M1073741 Bioucas-Dias, J.M., Figueiredo, M.A.: An iterative algorithm for linear inverse problems with compound regularizers. Proceedings – International Conference on Image Processing, ICIP. (pp. 685–688) (2008). https://doi.org/10.1109/ICIP.2008.4711847 DunnJCConvexity, monotonicity, and gradient processes in Hilbert spaceJ. Math. Anal. Appl.19765314515838817610.1016/0022-247X(76)90152-9 PholasaNCholamjiakPChoYJModified forward-backward splitting methods for accretive operators in Banach spacesJ. Nonlinear Sci. Appl.20169527662778349114410.22436/jnsa.009.05.72 SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory20111211872042797080 VoroninSWoerdemanHJA new iterative firm-thresholding algorithm for inverse problems with sparsity constraintsAppl. Comput. Harmon. Anal.2013351151164305375110.1016/j.acha.2012.08.004 BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces20172BerlinSpringer10.1007/978-3-319-48311-5 LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791696497955131910.1137/0716071 BerindeVPicard iteration converges faster than Mann iteration for a class of quasi-contractive operatorsFixed Point Theory Appl.20042971052086709 Chambolle, A., Dossal, C.: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm.” J. Optim. Theory Appl. 166(3), 968–982 (2015) CholamjiakPA generalized forward–backward splitting method for solving quasi inclusion problems in Banach spacesNumer. Algorithms2016714915932347974710.1007/s11075-015-0030-6 DadashiVPostolacheMForward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operatorsArab. J. Math.2020918999406289510.1007/s40065-018-0236-2 SahuDRYaoJCVermaMShuklaKKConvergence rate analysis of proximal gradient methods with applications to composite minimization problemsOptimization202170175100419578210.1080/02331934.2019.1702040 ChoSYKangSMApproximation of common solutions of variational inequalities via strict pseudocontractionsActa Math. Sci.20123216071618292744810.1016/S0252-9602(12)60127-1 Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011) CombettesPLWajsRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005411681200220384910.1137/050626090 LatafatPPatrinosPAsymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operatorsComput. Optim. Appl.20176815793368290810.1007/s10589-017-9909-6 AgarwalRPO’ReganDSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.20078161792314666 Cui, F., Tang, Y., Zhu, C.: Convergence analysis of a variable metric forward-backward splitting algorithm with applications. J. Inequal. Appl. 2019(1), 141, 27 pp. (2019) KarakayaVAtalanYDoganKBouzaraNEHSome fixed point results for a new three steps iteration process in Banach spacesFixed Point Theory2017182625640370116510.24193/fpt-ro.2017.2.50 BrezinskiCConvergence acceleration during the 20th centuryJ. Comput. Appl. Math.20001221–2121179464910.1016/S0377-0427(00)00360-5 AtalanYOn a new fixed point iterative algorithm for general variational inequalitiesJ. Nonlinear Convex Anal.20192011237123864055652 GürsoyFSahuDRAnsariQHS-iteration process for variational inclusions and its rate of convergenceJ. Nonlinear Convex Anal.201617175317673562626 BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.200921183202248652710.1137/080716542 WangYWangFStrong convergence of the forward-backward splitting method with multiple parameters in Hilbert spacesOptimization2018674493505376000310.1080/02331934.2017.1411485 PicardEMémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successivesJ. de Math. Pur. et App.189046145210 BerindeVOn a notion of rapidity of convergence used in the study of fixed point iterative methodsCreat. Math. Inform.2016252940355867110.37193/CMI.2016.01.04 IshikawaSFixed points by a new iteration methodProc. Am. Math. Soc.19744414715033646910.1090/S0002-9939-1974-0336469-5 Ansari, Q.H.: Vector equilibrium problems and vector variational inequalities. In Vector Variational Inequalities and Vector Equilibria, Springer, Boston, MA (2000) RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control. Optim.19761487789841048310.1137/0314056 GürsoyFA Picard-S iterative method for approximating fixed point of weak-contraction mappingsFilomat2016301028292845358340810.2298/FIL1610829G OstrowskiAThe round-off stability of iterationsZAMM-J. Appl. Math. Mech.1967472778121673110.1002/zamm.19670470202 KinderlehrerDStampacchiaGAn Introduction to Variational Inequalities and Their Applications1980New YorkAcademic Press F Gürsoy (1425_CR28) 2016; 30 PL Lions (1425_CR8) 1979; 16 V Berinde (1425_CR35) 2016; 25 RT Rockafellar (1425_CR9) 1976; 14 1425_CR3 N Pholasa (1425_CR14) 2016; 9 RP Agarwal (1425_CR27) 2007; 8 1425_CR36 1425_CR38 1425_CR15 MA Noor (1425_CR26) 2000; 251 C Zong (1425_CR18) 2018; 10 C Brezinski (1425_CR33) 2000; 122 1425_CR39 Y Atalan (1425_CR41) 2019; 20 F Gürsoy (1425_CR42) 2020; 83 D Kinderlehrer (1425_CR1) 1980 SY Cho (1425_CR2) 2012; 32 JC Dunn (1425_CR10) 1976; 53 V Dadashi (1425_CR17) 2020; 9 HH Bauschke (1425_CR30) 2017 Y Wang (1425_CR19) 2018; 67 P Latafat (1425_CR13) 2017; 68 E Picard (1425_CR23) 1890; 4 V Karakaya (1425_CR29) 2017; 18 FE Browder (1425_CR21) 1967; 100 DR Sahu (1425_CR6) 2021; 70 WR Mann (1425_CR24) 1953; 4 S Salzo (1425_CR12) 2017; 27 DR Sahu (1425_CR22) 2011; 12 A Beck (1425_CR37) 2009; 2 PL Combettes (1425_CR11) 2014; 63 V Berinde (1425_CR34) 2004; 2 A Ostrowski (1425_CR32) 1967; 47 F Gürsoy (1425_CR4) 2016; 17 X Weng (1425_CR31) 1991; 113 PL Combettes (1425_CR5) 2005; 4 KM Osei-Bryson (1425_CR7) 2006; 8 P Cholamjiak (1425_CR16) 2016; 71 1425_CR20 S Ishikawa (1425_CR25) 1974; 44 S Voronin (1425_CR40) 2013; 35 |
References_xml | – reference: KinderlehrerDStampacchiaGAn Introduction to Variational Inequalities and Their Applications1980New YorkAcademic Press – reference: LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791696497955131910.1137/0716071 – reference: CholamjiakPA generalized forward–backward splitting method for solving quasi inclusion problems in Banach spacesNumer. Algorithms2016714915932347974710.1007/s11075-015-0030-6 – reference: CombettesPLWajsRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005411681200220384910.1137/050626090 – reference: PholasaNCholamjiakPChoYJModified forward-backward splitting methods for accretive operators in Banach spacesJ. Nonlinear Sci. Appl.20169527662778349114410.22436/jnsa.009.05.72 – reference: OstrowskiAThe round-off stability of iterationsZAMM-J. Appl. Math. Mech.1967472778121673110.1002/zamm.19670470202 – reference: LatafatPPatrinosPAsymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operatorsComput. Optim. Appl.20176815793368290810.1007/s10589-017-9909-6 – reference: MannWRMean value methods in iterationProc. Am. Math. Soc.195345065105484610.1090/S0002-9939-1953-0054846-3 – reference: IshikawaSFixed points by a new iteration methodProc. Am. Math. Soc.19744414715033646910.1090/S0002-9939-1974-0336469-5 – reference: Chambolle, A., Dossal, C.: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm.” J. Optim. Theory Appl. 166(3), 968–982 (2015) – reference: Ansari, Q.H.: Vector equilibrium problems and vector variational inequalities. In Vector Variational Inequalities and Vector Equilibria, Springer, Boston, MA (2000) – reference: GürsoyFErtürkMAbbasMA Picard-type iterative algorithm for general variational inequalities and nonexpansive mappingsNumer. Algorithms2020833867883406435610.1007/s11075-019-00706-w – reference: BrowderFEConvergence theorems for sequences of nonlinear operators in Banach spacesMath. Z.1967100320122521514110.1007/BF01109805 – reference: BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.200921183202248652710.1137/080716542 – reference: WangYWangFStrong convergence of the forward-backward splitting method with multiple parameters in Hilbert spacesOptimization2018674493505376000310.1080/02331934.2017.1411485 – reference: NoorMANew approximation schemes for general variational inequalitiesJ. Math. Anal. Appl.2000251217229179040610.1006/jmaa.2000.7042 – reference: CombettesPLVuBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization201463912891318322584510.1080/02331934.2012.733883 – reference: SalzoSThe variable metric forward-backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.201727421532181370789910.1137/16M1073741 – reference: RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control. Optim.19761487789841048310.1137/0314056 – reference: SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory20111211872042797080 – reference: ZongCTangYChoYJConvergence analysis of an inexact three-operator splitting algorithmSymmetry2018101156310.3390/sym10110563 – reference: Milovanović, G.V.: Numerical Analysis, Part I, Naučna Knjiga, Beograd, 1991 (Serbian) – reference: Bioucas-Dias, J.M., Figueiredo, M.A.: An iterative algorithm for linear inverse problems with compound regularizers. Proceedings – International Conference on Image Processing, ICIP. (pp. 685–688) (2008). https://doi.org/10.1109/ICIP.2008.4711847 – reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces20172BerlinSpringer10.1007/978-3-319-48311-5 – reference: DadashiVPostolacheMForward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operatorsArab. J. Math.2020918999406289510.1007/s40065-018-0236-2 – reference: KarakayaVAtalanYDoganKBouzaraNEHSome fixed point results for a new three steps iteration process in Banach spacesFixed Point Theory2017182625640370116510.24193/fpt-ro.2017.2.50 – reference: Cui, F., Tang, Y., Zhu, C.: Convergence analysis of a variable metric forward-backward splitting algorithm with applications. J. Inequal. Appl. 2019(1), 141, 27 pp. (2019) – reference: AtalanYOn a new fixed point iterative algorithm for general variational inequalitiesJ. Nonlinear Convex Anal.20192011237123864055652 – reference: DunnJCConvexity, monotonicity, and gradient processes in Hilbert spaceJ. Math. Anal. Appl.19765314515838817610.1016/0022-247X(76)90152-9 – reference: Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011) – reference: GürsoyFA Picard-S iterative method for approximating fixed point of weak-contraction mappingsFilomat2016301028292845358340810.2298/FIL1610829G – reference: AgarwalRPO’ReganDSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.20078161792314666 – reference: SahuDRYaoJCVermaMShuklaKKConvergence rate analysis of proximal gradient methods with applications to composite minimization problemsOptimization202170175100419578210.1080/02331934.2019.1702040 – reference: BerindeVOn a notion of rapidity of convergence used in the study of fixed point iterative methodsCreat. Math. Inform.2016252940355867110.37193/CMI.2016.01.04 – reference: PicardEMémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successivesJ. de Math. Pur. et App.189046145210 – reference: BerindeVPicard iteration converges faster than Mann iteration for a class of quasi-contractive operatorsFixed Point Theory Appl.20042971052086709 – reference: ChoSYKangSMApproximation of common solutions of variational inequalities via strict pseudocontractionsActa Math. Sci.20123216071618292744810.1016/S0252-9602(12)60127-1 – reference: BrezinskiCConvergence acceleration during the 20th centuryJ. Comput. Appl. Math.20001221–2121179464910.1016/S0377-0427(00)00360-5 – reference: WengXFixed point iteration for local strictly pseudocontractive mappingProc. Am. Math. Soc.1991113372773110.1090/S0002-9939-1991-1086345-8 – reference: VoroninSWoerdemanHJA new iterative firm-thresholding algorithm for inverse problems with sparsity constraintsAppl. Comput. Harmon. Anal.2013351151164305375110.1016/j.acha.2012.08.004 – reference: Osei-BrysonKMGilesKSplitting methods for decision tree induction: An exploration of the relative performance of two entropy-based familiesInf. Syst. Front.20068319520910.1007/s10796-006-8779-8 – reference: GürsoyFSahuDRAnsariQHS-iteration process for variational inclusions and its rate of convergenceJ. Nonlinear Convex Anal.201617175317673562626 – volume: 68 start-page: 57 issue: 1 year: 2017 ident: 1425_CR13 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-017-9909-6 – volume: 100 start-page: 201 issue: 3 year: 1967 ident: 1425_CR21 publication-title: Math. Z. doi: 10.1007/BF01109805 – volume: 122 start-page: 1 issue: 1–2 year: 2000 ident: 1425_CR33 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00360-5 – volume: 25 start-page: 29 year: 2016 ident: 1425_CR35 publication-title: Creat. Math. Inform. doi: 10.37193/CMI.2016.01.04 – volume: 4 start-page: 1168 year: 2005 ident: 1425_CR5 publication-title: Multiscale Model. Simul. doi: 10.1137/050626090 – volume: 8 start-page: 61 issue: 1 year: 2007 ident: 1425_CR27 publication-title: J. Nonlinear Convex Anal. – volume: 18 start-page: 625 issue: 2 year: 2017 ident: 1425_CR29 publication-title: Fixed Point Theory doi: 10.24193/fpt-ro.2017.2.50 – volume: 9 start-page: 89 issue: 1 year: 2020 ident: 1425_CR17 publication-title: Arab. J. Math. doi: 10.1007/s40065-018-0236-2 – volume: 17 start-page: 1753 year: 2016 ident: 1425_CR4 publication-title: J. Nonlinear Convex Anal. – volume: 27 start-page: 2153 issue: 4 year: 2017 ident: 1425_CR12 publication-title: SIAM J. Optim. doi: 10.1137/16M1073741 – volume: 14 start-page: 877 year: 1976 ident: 1425_CR9 publication-title: SIAM J. Control. Optim. doi: 10.1137/0314056 – ident: 1425_CR38 doi: 10.1007/s10957-015-0746-4 – volume: 251 start-page: 217 year: 2000 ident: 1425_CR26 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2000.7042 – volume: 9 start-page: 2766 issue: 5 year: 2016 ident: 1425_CR14 publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.009.05.72 – volume: 12 start-page: 187 issue: 1 year: 2011 ident: 1425_CR22 publication-title: Fixed Point Theory – volume: 53 start-page: 145 year: 1976 ident: 1425_CR10 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(76)90152-9 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 1425_CR37 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume-title: An Introduction to Variational Inequalities and Their Applications year: 1980 ident: 1425_CR1 – volume: 67 start-page: 493 issue: 4 year: 2018 ident: 1425_CR19 publication-title: Optimization doi: 10.1080/02331934.2017.1411485 – volume: 83 start-page: 867 issue: 3 year: 2020 ident: 1425_CR42 publication-title: Numer. Algorithms doi: 10.1007/s11075-019-00706-w – volume: 4 start-page: 506 year: 1953 ident: 1425_CR24 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1953-0054846-3 – volume: 20 start-page: 2371 issue: 11 year: 2019 ident: 1425_CR41 publication-title: J. Nonlinear Convex Anal. – volume: 32 start-page: 1607 year: 2012 ident: 1425_CR2 publication-title: Acta Math. Sci. doi: 10.1016/S0252-9602(12)60127-1 – volume: 113 start-page: 727 issue: 3 year: 1991 ident: 1425_CR31 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1991-1086345-8 – volume: 47 start-page: 77 issue: 2 year: 1967 ident: 1425_CR32 publication-title: ZAMM-J. Appl. Math. Mech. doi: 10.1002/zamm.19670470202 – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2017 ident: 1425_CR30 doi: 10.1007/978-3-319-48311-5 – volume: 71 start-page: 915 issue: 4 year: 2016 ident: 1425_CR16 publication-title: Numer. Algorithms doi: 10.1007/s11075-015-0030-6 – volume: 70 start-page: 75 issue: 1 year: 2021 ident: 1425_CR6 publication-title: Optimization doi: 10.1080/02331934.2019.1702040 – volume: 30 start-page: 2829 issue: 10 year: 2016 ident: 1425_CR28 publication-title: Filomat doi: 10.2298/FIL1610829G – ident: 1425_CR36 – ident: 1425_CR20 doi: 10.1007/978-0-387-70914-7 – ident: 1425_CR39 doi: 10.1109/ICIP.2008.4711847 – volume: 10 start-page: 563 issue: 11 year: 2018 ident: 1425_CR18 publication-title: Symmetry doi: 10.3390/sym10110563 – volume: 35 start-page: 151 issue: 1 year: 2013 ident: 1425_CR40 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2012.08.004 – ident: 1425_CR3 doi: 10.1007/978-1-4613-0299-5_1 – volume: 8 start-page: 195 issue: 3 year: 2006 ident: 1425_CR7 publication-title: Inf. Syst. Front. doi: 10.1007/s10796-006-8779-8 – volume: 2 start-page: 97 year: 2004 ident: 1425_CR34 publication-title: Fixed Point Theory Appl. – volume: 44 start-page: 147 year: 1974 ident: 1425_CR25 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1974-0336469-5 – volume: 63 start-page: 1289 issue: 9 year: 2014 ident: 1425_CR11 publication-title: Optimization doi: 10.1080/02331934.2012.733883 – volume: 4 start-page: 145 issue: 6 year: 1890 ident: 1425_CR23 publication-title: J. de Math. Pur. et App. – volume: 16 start-page: 964 year: 1979 ident: 1425_CR8 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0716071 – ident: 1425_CR15 doi: 10.1186/s13660-019-2097-4 |
SSID | ssj0009852 |
Score | 2.4121966 |
Snippet | In this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for nonsmooth convex minimization. We provide a thorough convergence... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 869 |
SubjectTerms | Algorithms Classification Computer Science Hilbert space Machine learning Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Real Functions Splitting |
Title | Novel algorithms based on forward-backward splitting technique: effective methods for regression and classification |
URI | https://link.springer.com/article/10.1007/s10898-024-01425-w https://www.proquest.com/docview/3121815616 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VuLQHHmkrwiPaQw9U1FLWa6_X3EJEilqRE5HgZO3LUCl1UBzg7zO7XidQAVJPtuVZHzyzO5-933wD8M0yLRHo2ijlykRJZnUkNWeR5SqXfdXPlHLVyBdjfj5Jfl2lV6EorG7Z7u2WpF-pnxW7CVcOFjvWBEZa9LgGG6n7dsconsSDldSu8H12-jnapLgKh1KZ15_xMh2tMOY_26I-24y2YTPARDJo_LoDH2zVga22BQMJM7IDn57pCeLVxVKEte7ATrCqyVEQl_7-Gerx7MFOiZzezOZ_Frd_a-LymCGziiB89RRa5X7p4QmpEaB6WjRZKr2ekIYAgmskaZpP124cmdubhlBbEVkZoh0mdyQk7_cvMBmdXQ7Po9B4IdKMs0VUJsJQJmRaUi0QAZbGSlXmnJpEpCVCpszoPEl0LG2GgE_zEm0QdypGqaF5yb7CejWr7C6QmGU0V06EUKcJjTEzyExYnRuVlEwI2gXavv9CB1Vy1xxjWqz0lJ3PCvRZ4X1WPHbheDnmrtHkeNf6oHVrEeZnXTDqoA1iR96FH62rV7ffftre_5nvw8fYRZvnvxzA-mJ-bw8RxSxUDzYGo9PTsTv-vP591oO1IR_2fCg_ASGN7rM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4a3WFwGGsB0TGGDzsMQaQ6dhyH21RRdWztqZV6i_wrA6mkqCnrv7_nxG1HBUi7JcqzD3nPfl_i730P4MIxoxDouigR2kY8dSZSRrDICZ2pnu6lWvtq5NFYDKf82yyZBZkcXwuzd37vS9ykLwKLPVcC4ytaP4NDjl_Knr7XF_2dwK6su-v0MrRJcO8NBTJ_n-PPJLRDlnuHoXWOGZzAcQCH5KrxZhsOXNmBl5vGCySsww68eKQiiHejrfRq1YF2sKrIZZCU_vgKqvHi3s2Jmt8tlj9W339WxGcvSxYlQdBaE2e1_5GHF6RCWFqToclW3_ULaWgfuDOSpuV05ceRpbtraLQlUaUlxiNxTz2qvf0apoOvk_4wCu0WIsMEW0UFl5YyqZKCGom4r7BO6SIT1HKZFAiUUmsyzk2sXIowz4gCbRBtakappVnB3kCrXJTuLZCYpTTTXnrQJJzGmA9UKp3JrOYFk5J2gW7ef26CFrlviTHPdyrK3mc5-iyvfZavu_BpO-ZXo8TxX-uzjVvzsCqrnFEPaBAxii583rh69_jfs50-zfwDHA0no9v89np88w6exz7yagbMGbRWy9_uPeKYlT6vA_gBRyvpmA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VKlX0QMu2iKXQ-sCBCiLWceI4vVXbrvhc9VAkbpE_aaUlizYp_H3GTrK7oFKpt0QZ-5AZe17iN28A9izTEoGujVKuTJRkVkdScxZZrnI5UINMKV-NfDHmx5fJ6VV6tVTFH9ju3ZFkU9PgVZrK-ujWuKOlwjfhS8Niz6DAqIvuV-AlfqmEg9ohHy5kd0XouTPI0SbFHbktm_n7HI9T0wJvPjkiDZln9BbWW8hIvjY-3oAXtuzBm64dA2lXZw9eL2kL4t3FXJC16sFGa1WR_VZo-vM7qMbTOzshcnI9nf2uf91UxOc0Q6YlQSgb6LTK_97DC1IhWA0UaTJXff1CGjII7pekaURd-XFkZq8bcm1JZGmI9vjcE5JCDLyHy9H3n8PjqG3CEGnGWR25RBjKhEwd1QLRoDNWKpdzahKROoRPmdF5kuhY2gzBn-YObRCDKkapobljm7BaTku7BSRmGc2VFyTUaUJjzBIyE1bnRiWOCUH7QLv3X-hWodw3ypgUC21l77MCfVYEnxX3fTiYj7lt9Dn-ab3TubVo12pVMOphDuJI3ofDztWLx8_Ptv1_5p_g1Y9vo-L8ZHz2AdZiH3iBFrMDq_Xsj91FcFOrjyF-HwCGaPHf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+algorithms+based+on+forward-backward+splitting+technique%3A+effective+methods+for+regression+and+classification&rft.jtitle=Journal+of+global+optimization&rft.au=Atalan%2C+Yunus&rft.au=Hac%C4%B1o%C4%9Flu%2C+Emirhan&rft.au=Ert%C3%BCrk%2C+M%C3%BCzeyyen&rft.au=G%C3%BCrsoy%2C+Faik&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=90&rft.issue=4&rft.spage=869&rft.epage=890&rft_id=info:doi/10.1007%2Fs10898-024-01425-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |