Novel algorithms based on forward-backward splitting technique: effective methods for regression and classification
In this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for nonsmooth convex minimization. We provide a thorough convergence analysis, emphasizing the new algorithms and contrasting them with existing ones. Our findings are validated through a numerical example. The pract...
Saved in:
Published in | Journal of global optimization Vol. 90; no. 4; pp. 869 - 890 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we introduce two novel forward-backward splitting algorithms (FBSAs) for nonsmooth convex minimization. We provide a thorough convergence analysis, emphasizing the new algorithms and contrasting them with existing ones. Our findings are validated through a numerical example. The practical utility of these algorithms in real-world applications, including machine learning for tasks such as classification, regression, and image deblurring reveal that these algorithms consistently approach optimal solutions with fewer iterations, highlighting their efficiency in real-world scenarios. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-024-01425-w |