Fragility analysis for vehicle derailment on railway bridges under earthquakes

With the rapid development of high-speed railways around the globe, the safety of vehicles running on bridges during earthquakes has been paid more attention to. In the design of railway bridges, in addition to ensuring the safety of the bridge structure in earthquake, the vehicle safety should also...

Full description

Saved in:
Bibliographic Details
Published inRailway Engineering Science (Online) Vol. 30; no. 4; pp. 494 - 511
Main Authors Jin, Zhibin, Liu, Weizhan
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the rapid development of high-speed railways around the globe, the safety of vehicles running on bridges during earthquakes has been paid more attention to. In the design of railway bridges, in addition to ensuring the safety of the bridge structure in earthquake, the vehicle safety should also be ensured. Previous studies have focused on the detailed analysis of vehicle derailment on bridges, proposing complex numerical algorithms for wheel–rail contact analysis as well as for parametric analysis, but they are inconvenient for designers. Intensity measure (IM) used in performance-based earthquake engineering is introduced in this study. A method to evaluate the vehicle safety on bridges under earthquakes is proposed with respect to the optimal IM. Then, the vehicle derailment case of the Kumamoto earthquake in Japan verifies the decoupling method of vehicle–bridge interaction model. In the assessment of vehicle derailments, eight IMs are systematically compared: the IMs of bridge deck motion are generally better than those of ground motion; the variation coefficient of spectral intensity of the bridge deck is the smallest at different frequencies. Finally, the derailment fragility cloud map is presented to evaluate the vehicle safety on bridges during earthquakes.
ISSN:2662-4745
2662-4753
DOI:10.1007/s40534-022-00275-0