Efficient fair principal component analysis

It has been shown that dimension reduction methods such as Principal Component Analysis (PCA) may be inherently prone to unfairness and treat data from different sensitive groups such as race, color, sex, etc., unfairly. In pursuit of fairness-enhancing dimensionality reduction, using the notion of...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 111; no. 10; pp. 3671 - 3702
Main Authors Kamani, Mohammad Mahdi, Haddadpour, Farzin, Forsati, Rana, Mahdavi, Mehrdad
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
DOI10.1007/s10994-021-06100-9

Cover

Loading…
More Information
Summary:It has been shown that dimension reduction methods such as Principal Component Analysis (PCA) may be inherently prone to unfairness and treat data from different sensitive groups such as race, color, sex, etc., unfairly. In pursuit of fairness-enhancing dimensionality reduction, using the notion of Pareto optimality, we propose an adaptive first-order algorithm to learn a subspace that preserves fairness, while slightly compromising the reconstruction loss. Theoretically, we provide sufficient conditions that the solution of the proposed algorithm belongs to the Pareto frontier for all sensitive groups; thereby, the optimal trade-off between overall reconstruction loss and fairness constraints is guaranteed. We also provide the convergence analysis of our algorithm and show its efficacy through empirical studies on different datasets, which demonstrates superior performance in comparison with state-of-the-art algorithms. The proposed fairness-aware PCA algorithm can be efficiently generalized to multiple group sensitive features and effectively reduce the unfairness decisions in downstream tasks such as classification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-021-06100-9