Block colourings of 6-cycle systems

Let \(\Sigma=(X,\mathcal{B})\) be a \(6\)-cycle system of order \(v\), so \(v\equiv 1,9\mod 12\). A \(c\)-colouring of type \(s\) is a map \(\phi\colon\mathcal {B}\rightarrow \mathcal{C}\), with \(C\) set of colours, such that exactly \(c\) colours are used and for every vertex \(x\) all the blocks...

Full description

Saved in:
Bibliographic Details
Published inRocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica Vol. 37; no. 45; pp. 647 - 664
Main Authors Bonacini, Paola, Gionfriddo, Mario, Marino, Lucia
Format Journal Article
LanguageEnglish
Published AGH Univeristy of Science and Technology Press 2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let \(\Sigma=(X,\mathcal{B})\) be a \(6\)-cycle system of order \(v\), so \(v\equiv 1,9\mod 12\). A \(c\)-colouring of type \(s\) is a map \(\phi\colon\mathcal {B}\rightarrow \mathcal{C}\), with \(C\) set of colours, such that exactly \(c\) colours are used and for every vertex \(x\) all the blocks containing \(x\) are coloured exactly with \(s\) colours. Let \(\frac{v-1}{2}=qs+r\), with \(q, r\geq 0\). \(\phi\) is equitable if for every vertex \(x\) the set of the \(\frac{v-1}{2}\) blocks containing \(x\) is partitioned in \(r\) colour classes of cardinality \(q+1\) and \(s-r\) colour classes of cardinality \(q\). In this paper we study bicolourings and tricolourings, for which, respectively, \(s=2\) and \(s=3\), distinguishing the cases \(v=12k+1\) and \(v=12k+9\). In particular, we settle completely the case of \(s=2\), while for \(s=3\) we determine upper and lower bounds for \(c\).
ISSN:1232-9274
DOI:10.7494/OpMath.2017.37.5.647