Block colourings of 6-cycle systems
Let \(\Sigma=(X,\mathcal{B})\) be a \(6\)-cycle system of order \(v\), so \(v\equiv 1,9\mod 12\). A \(c\)-colouring of type \(s\) is a map \(\phi\colon\mathcal {B}\rightarrow \mathcal{C}\), with \(C\) set of colours, such that exactly \(c\) colours are used and for every vertex \(x\) all the blocks...
Saved in:
Published in | Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica Vol. 37; no. 45; pp. 647 - 664 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AGH Univeristy of Science and Technology Press
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let \(\Sigma=(X,\mathcal{B})\) be a \(6\)-cycle system of order \(v\), so \(v\equiv 1,9\mod 12\). A \(c\)-colouring of type \(s\) is a map \(\phi\colon\mathcal {B}\rightarrow \mathcal{C}\), with \(C\) set of colours, such that exactly \(c\) colours are used and for every vertex \(x\) all the blocks containing \(x\) are coloured exactly with \(s\) colours. Let \(\frac{v-1}{2}=qs+r\), with \(q, r\geq 0\). \(\phi\) is equitable if for every vertex \(x\) the set of the \(\frac{v-1}{2}\) blocks containing \(x\) is partitioned in \(r\) colour classes of cardinality \(q+1\) and \(s-r\) colour classes of cardinality \(q\). In this paper we study bicolourings and tricolourings, for which, respectively, \(s=2\) and \(s=3\), distinguishing the cases \(v=12k+1\) and \(v=12k+9\). In particular, we settle completely the case of \(s=2\), while for \(s=3\) we determine upper and lower bounds for \(c\). |
---|---|
ISSN: | 1232-9274 |
DOI: | 10.7494/OpMath.2017.37.5.647 |