On the Sixth-Order Beam Equation of Small Deflection with Variable Parameters
This paper establishes an existence and uniqueness theorem for the nonlocal sixth-order nonlinear beam differential equations with four parameters of the form u(6)+A(x)u(4)+B(x)u″+C(x)u=λf(x,u,u″,u(4)),0<x<1, subject to the integral boundary conditions: u(0)=u(1)=∫01p(x)u(x)dx, u″(0)=u″(1)=∫01...
Saved in:
Published in | Mathematics (Basel) Vol. 13; no. 5; p. 727 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math13050727 |
Cover
Abstract | This paper establishes an existence and uniqueness theorem for the nonlocal sixth-order nonlinear beam differential equations with four parameters of the form u(6)+A(x)u(4)+B(x)u″+C(x)u=λf(x,u,u″,u(4)),0<x<1, subject to the integral boundary conditions: u(0)=u(1)=∫01p(x)u(x)dx, u″(0)=u″(1)=∫01q(x)u″(x)dx and u(4)(0)=u(4)(1)=∫01s(x)u(4)(x)dx such that 1−∫01p2(x)dx=α>0,1−∫01q2(x)dx=β>0,1−∫01s2(x)dx=γ>0, under some growth condition on f, and provided that an upper bound exists for the flexural rigidity λ to guarantee that no large deflections will occur. |
---|---|
AbstractList | This paper establishes an existence and uniqueness theorem for the nonlocal sixth-order nonlinear beam differential equations with four parameters of the form u(6)+A(x)u(4)+B(x)u″+C(x)u=λf(x,u,u″,u(4)),0<x<1, subject to the integral boundary conditions: u(0)=u(1)=∫01p(x)u(x)dx, u″(0)=u″(1)=∫01q(x)u″(x)dx and u(4)(0)=u(4)(1)=∫01s(x)u(4)(x)dx such that 1−∫01p2(x)dx=α>0,1−∫01q2(x)dx=β>0,1−∫01s2(x)dx=γ>0, under some growth condition on f, and provided that an upper bound exists for the flexural rigidity λ to guarantee that no large deflections will occur. This paper establishes an existence and uniqueness theorem for the nonlocal sixth-order nonlinear beam differential equations with four parameters of the form u(6)+A(x)u(4)+B(x)u″+C(x)u=λf(x,u,u″,u(4)),0<x<1, subject to the integral boundary conditions: u(0)=u(1)=∫01p(x)u(x)dx, u″(0)=u″(1)=∫01q(x)u″(x)dx and u(4)(0)=u(4)(1)=∫01s(x)u(4)(x)dx such that 1−∫01p2(x)dx=α>0,1−∫01q2(x)dx=β>0,1−∫01s2(x)dx=γ>0, under some growth condition on f, and provided that an upper bound exists for the flexural rigidity λ to guarantee that no large deflections will occur. This paper establishes an existence and uniqueness theorem for the nonlocal sixth-order nonlinear beam differential equations with four parameters of the form u(6)+A(x)u(4)+B(x)u″+C(x)u=λf(x,u,u″,u(4)), 0<x<1, subject to the integral boundary conditions: u(0)=u(1)=∫01p(x)u(x)dx, u″(0)=u″(1)=∫01q(x)u″(x)dx and u(4)(0)=u(4)(1)=∫01s(x)u(4)(x)dx such that 1−∫01p2(x)dx=α>0, 1−∫01q2(x)dx=β>0, 1−∫01s2(x)dx=γ>0, under some growth condition on f, and provided that an upper bound exists for the flexural rigidity λ to guarantee that no large deflections will occur. This paper establishes an existence and uniqueness theorem for the nonlocal sixth-order nonlinear beam differential equations with four parameters of the form u[sup.(6)]+A(x)u[sup.(4)]+B(x)u[sup.″]+C(x)u=λf(x,u,u[sup.″],u[sup.(4)]), 0<x<1, subject to the integral boundary conditions: u(0)=u(1)=∫[sub.0] [sup.1]p(x)u(x)dx, u[sup.″](0)=u[sup.″](1)=∫[sub.0] [sup.1]q(x)u[sup.″](x)dx and u[sup.(4)](0)=u[sup.(4)](1)=∫[sub.0] [sup.1]s(x)u[sup.(4)](x)dx such that 1−∫[sub.0] [sup.1]p[sup.2](x)dx=α>0, 1−∫[sub.0] [sup.1]q[sup.2](x)dx=β>0, 1−∫[sub.0] [sup.1]s[sup.2](x)dx=γ>0, under some growth condition on f, and provided that an upper bound exists for the flexural rigidity λ to guarantee that no large deflections will occur. |
Audience | Academic |
Author | Bougoffa, Lazhar Alhelali, Nawal Khanfer, Ammar |
Author_xml | – sequence: 1 givenname: Ammar surname: Khanfer fullname: Khanfer, Ammar – sequence: 2 givenname: Lazhar orcidid: 0000-0003-0189-9436 surname: Bougoffa fullname: Bougoffa, Lazhar – sequence: 3 givenname: Nawal surname: Alhelali fullname: Alhelali, Nawal |
BookMark | eNpNUU1vFDEMjVCRKKU3fkAkrkzJ1yQzx1IKrVS0SAWukZM43axmJm0mK-Dfk3YRqn2w9Ww_Pfm9JkdLXpCQt5ydSTmyDzPULZesZ0aYF-RYCGE60wZHz_pX5HRdd6zFyOWgxmPydbPQukV6m37XbbcpAQv9iDDTy4c91JQXmiO9nWGa6CeME_on7FeqW_oTSgI3If0GBWasWNY35GWEacXTf_WE_Ph8-f3iqrvZfLm-OL_pvNSydgH7UfRyQMMcVwM41RQJ5kyvONdMaTZGoQTT3IwAQqkBXQg8ahVc74KTJ-T6wBsy7Ox9STOUPzZDsk9ALncWSk1-QqtG00d0DgYIyjhw3smeA3jv9CCZbFzvDlz3JT_sca12l_dlafKt5EZLqdur2tbZYesOGmlaYq4FfMuAc_LNiZgafj5IIRnTrG8H7w8HvuR1LRj_y-TMPhpmnxsm_wLcGIhF |
Cites_doi | 10.1016/j.compstruct.2013.02.011 10.1016/j.cnsns.2010.01.028 10.1080/00207169208804130 10.3934/math.2021575 10.3934/math.2021664 10.1086/154522 10.1016/j.cnsns.2008.10.013 10.30538/oms2020.0088 10.1016/j.chaos.2005.08.180 10.1016/j.camwa.2007.11.026 10.1080/00207169608804493 10.1186/1687-2770-2012-22 10.1090/S0025-5718-03-01587-4 10.1090/S0002-9939-1988-0958062-3 10.1186/s13662-019-2385-9 10.1155/2010/878131 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math13050727 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (Proquest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_4975febba8ad47babcb351aaccb68303 A832300605 10_3390_math13050727 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c363t-de592538e70b148ab400020b75411604609f24206179aa2448ebdd1f64db5bdb3 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:29:25 EDT 2025 Fri Jul 25 12:02:10 EDT 2025 Tue Jun 10 21:00:11 EDT 2025 Tue Jul 01 05:30:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-de592538e70b148ab400020b75411604609f24206179aa2448ebdd1f64db5bdb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0189-9436 |
OpenAccessLink | https://doaj.org/article/4975febba8ad47babcb351aaccb68303 |
PQID | 3176336138 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4975febba8ad47babcb351aaccb68303 proquest_journals_3176336138 gale_infotracacademiconefile_A832300605 crossref_primary_10_3390_math13050727 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Olaiya (ref_13) 2020; 16 Cannon (ref_28) 2003; 73 Khalid (ref_19) 2019; 2019 Agarwal (ref_4) 2013; 1–2 Khanfer (ref_3) 2021; 1 Zouaoui (ref_20) 2020; 4 Ghazala (ref_26) 2006; 181 Yang (ref_24) 1988; 104 He (ref_12) 2003; 143 Khanfer (ref_2) 2021; 6 Noor (ref_29) 2008; 55 Khalid (ref_17) 2018; 50 Boutayeb (ref_27) 1992; 45 Toomre (ref_8) 1976; 207 Noor (ref_14) 2009; 14 Siddiqi (ref_15) 1996; 60 Wazwaz (ref_11) 2001; 118 Bougoffa (ref_25) 2018; 55 Jalilian (ref_10) 2010; 15 Manan (ref_18) 2018; 9 Glatzmaier (ref_7) 1985; 31 Li (ref_21) 2012; 2012 Guedda (ref_22) 2014; 11 Zhang (ref_23) 2010; 2010 ref_9 Cveticanin (ref_30) 2006; 30 Khanfer (ref_1) 2021; 6 Kanwal (ref_16) 2019; 10 ref_5 ref_6 |
References_xml | – ident: ref_5 doi: 10.1016/j.compstruct.2013.02.011 – volume: 50 start-page: 91 year: 2018 ident: ref_17 article-title: Cubic B-spline solution of nonlinear sixth order boundary value problems publication-title: Punjab Univ. J. Math. – ident: ref_9 – volume: 15 start-page: 3805 year: 2010 ident: ref_10 article-title: Convergence analysis of nonic-spline solutions for special nonlinear sixth-order boundary value problems publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.01.028 – volume: 45 start-page: 207 year: 1992 ident: ref_27 article-title: Numerical methods for the solution of special sixth-order boundary-value problems publication-title: Int. J. Comput. Math. doi: 10.1080/00207169208804130 – volume: 9 start-page: 499 year: 2018 ident: ref_18 article-title: A subdivision approach to the approximate solution of 3rd order boundary value problem publication-title: Commun. Math. Appl. – volume: 6 start-page: 9899 year: 2021 ident: ref_1 article-title: On the fourth-order nonlinear beam equation of a small deflection with nonlocal conditions publication-title: Aims Math. doi: 10.3934/math.2021575 – volume: 6 start-page: 11467 year: 2021 ident: ref_2 article-title: On the nonlinear system of fourth-order beam equations with integral boundary conditions publication-title: Aims Math. doi: 10.3934/math.2021664 – volume: 16 start-page: 1 year: 2020 ident: ref_13 article-title: Boundary value method for direct solution of sixth-Order boundary value problems publication-title: Asian Res. J. Math. – volume: 11 start-page: 50 year: 2014 ident: ref_22 article-title: Positive solution for m-point sixth-order boundary value problem with variable parameter publication-title: Sci. Bull. Petru Maior Univ. Tirg. Mures – volume: 181 start-page: 708 year: 2006 ident: ref_26 article-title: Solution of sixth order boundary value problems using non-polynomial spline technique publication-title: Appl. Math. Comput. – volume: 207 start-page: 545 year: 1976 ident: ref_8 article-title: Stellar convection theory ii: Single-mode study of the second convection zone in a-type stars publication-title: Astrophys. J. doi: 10.1086/154522 – volume: 14 start-page: 2571 year: 2009 ident: ref_14 article-title: Variational iteration method for solving sixth-order boundary value problems publication-title: Commun. Nonlinear Sci. Numer. doi: 10.1016/j.cnsns.2008.10.013 – volume: 4 start-page: 9 year: 2020 ident: ref_20 article-title: Positive solutions for boundary value problem of sixth-order elastic beam equation publication-title: Open J. Math. Sci. doi: 10.30538/oms2020.0088 – ident: ref_6 – volume: 10 start-page: 19 year: 2019 ident: ref_16 article-title: Numerical solution of 2-point boundary value problem by subdivision scheme publication-title: Commun. Math. Appl. – volume: 30 start-page: 1221 year: 2006 ident: ref_30 article-title: Homotopy-perturbation method for pure nonlinear differential equation publication-title: Chaos Solitons Fractals. doi: 10.1016/j.chaos.2005.08.180 – volume: 1–2 start-page: 437 year: 2013 ident: ref_4 article-title: Existence of positive solution for a sixth–order differential system with variable parameters publication-title: J. Appl Math Comput. – volume: 55 start-page: 2953 year: 2008 ident: ref_29 article-title: Homotopy perturbation method for solving sixth-order boundary value problems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2007.11.026 – volume: 143 start-page: 235 year: 2003 ident: ref_12 article-title: Variational approach to the sixth order boundary value problems publication-title: Appl. Math. Comput. – volume: 60 start-page: 295 year: 1996 ident: ref_15 article-title: Spline solutions of linear sixth-order boundary value problems publication-title: Int. J. Comput. Math. doi: 10.1080/00207169608804493 – volume: 2012 start-page: 22 year: 2012 ident: ref_21 article-title: The existence and multiplicity of positive solutions of nonlinear sixth-order boundary value problem with three variable coefficients publication-title: Bound. Value Probl. doi: 10.1186/1687-2770-2012-22 – volume: 118 start-page: 311 year: 2001 ident: ref_11 article-title: The numerical solution of sixth-order boundary value problems by the modified decomposition method publication-title: Appl. Math. Comput. – volume: 73 start-page: 1325 year: 2003 ident: ref_28 article-title: Sinc-Galerkin method for solving linear sixth-order boundary-value problems publication-title: Math. Comput. doi: 10.1090/S0025-5718-03-01587-4 – volume: 104 start-page: 175 year: 1988 ident: ref_24 article-title: Fourth-order two-point boundary value problems publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1988-0958062-3 – volume: 31 start-page: 137 year: 1985 ident: ref_7 article-title: Numerical simulations of stellar convection dynamics at the base of the convection zone publication-title: Fluid Dynam. – volume: 2019 start-page: 492 year: 2019 ident: ref_19 article-title: Numerical approximation for the solution of linear sixth order boundary value problems by cubic B-spline publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2385-9 – volume: 2010 start-page: 878131 year: 2010 ident: ref_23 article-title: Existence and multiplicity of positive solutions of a boundary-value problem for sixth-order ODE with three Parameters publication-title: Bound. Value Probl. doi: 10.1155/2010/878131 – volume: 55 start-page: 899 year: 2018 ident: ref_25 article-title: Existence and uniqueness theorems of second-order equations with integral boundary conditions publication-title: Bull. Korean Math. Soc. – volume: 1 start-page: 1 year: 2021 ident: ref_3 article-title: A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data publication-title: J. Funct. Spaces. |
SSID | ssj0000913849 |
Score | 2.291215 |
Snippet | This paper establishes an existence and uniqueness theorem for the nonlocal sixth-order nonlinear beam differential equations with four parameters of the form... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 727 |
SubjectTerms | Boundary conditions Boundary value problems Differential equations Existence theorems ordinary differential equations Parameters Uniqueness theorems Upper bounds |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELYW9rIcEOxDFAryAbSniCZ2EueEKEsXIXVZiWXFzZqJbUBqU2iLxM9nxk27XNhDIsXJIRrb883L3whxmIFLna7TxGXkm-isFxIwdEOThcyZoqhiyf_wV3Fxoy9v89s24DZryyqXOjEqajepOUZ-TDhXKEXgY04enxLuGsXZ1baFxpr4mBLS8Do3g5-rGAtzXhpdLerdFXn3x2QF3pPWJiOI28i8QaJI2P-eWo5YM9gSm62RKE8Xs7otPvjms9gYrhhWZ1_E8KqR9CivH144OMkEmrLvYSzPnxbk3XIS5PUYRiP5w4dRLLhqJEdd5V9yj_nAlPwNXJnF9Jpfxc3g_M_ZRdK2RkhqVah54nxeZaSrfNlDcmgAdcwpYpnrNC042VkFAl-2TyoAgnDj0bk0FNphjg7VN7HeTBq_IyRoV-ZIZlKAiunoTVB09bIQGLx62BFHSzHZxwUDhiXPgcVp34qzI_osw9U3zFsdBybTO9tuA6urMg8eEQw4XSJgjSpPAeoaC0No2hHfeQYs7675FGpoDwnQrzJPlT0lBaSYQybviO5ykmy77Wb23yLZ_f_rPfEp40a-sZisK9bn02e_T9bFHA_iEnoFYzzNWA priority: 102 providerName: ProQuest |
Title | On the Sixth-Order Beam Equation of Small Deflection with Variable Parameters |
URI | https://www.proquest.com/docview/3176336138 https://doaj.org/article/4975febba8ad47babcb351aaccb68303 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB219NIeEP1St4WVD1Q9RSSxk9hHFnaLkJai8iFu1ji2BdISKCxSfz4zTkB7Qb30kEiJcrBm4pk39vMbgO0SfeFVW2S-pNpElXnMUNPN6TKWXte1SZT_-VF9cKYOL6qLlVZfzAnr5YF7w-0o01QxOIcavWocutbJqkBsW1dr2et85iZfKaZSDDaF1Mr0THdJdf0O4b9LitcEf7iBzEoOSlL9LwXklGVmG7A-wEOx2w_rPbwK3Qd4N3_WVr3_CPNfnaBHcXL1l5clWTpTTAJei-mfXrZb3ERxco2LhdgPcZGoVp3g9VZxToUxH5USx8icLBbW_ARns-np3kE2NEXIWlnLZeZDZUqKUqHJHZUy6FTaTXRNpYqi5m1OEyntMjIxiJS8dXDeF7FW3lXOO_kZ1rqbLnwBgco3lSOAFNGwEL2Okq68jJHTVu5G8P3JTPa2176wVDOwOe2qOUcwYRs-f8OK1ekF-dEOfrT_8uMIfrAHLM-r5R22OBwPoKGyQpXdpdAjWT2mGsHmk5PsMOHuLcGgWkrCJvrr_xjNN3hbcqPfRDbbhLXl3UPYIvSxdGN4rWc_x_BmMj06_j1Ov90jBeTaNg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5iSwEfqDhFTWwncQ4IdelWW9pdKtqi3lw7tqHSNtvuLgL-FL-RmTyWXuDWQyLloSgaj_3NjGe-AXjDjUucLJPIcfRNJI9DZBSerOKBO5VlRZ3yP55ko1P58Sw9W4PfXS0MpVV2a2K9ULtZSTHybcS5TAgEH_X-6jqirlG0u9q10GjU4sD_-oEu2-Ld_i6O7xbne8OTD6Oo7SoQlSITy8j5tOA4zX0eW_QFjJX1dpzNU5kkGe0TFgFxi6C9MAbRT3nrXBIy6WxqnRX43TuwLqmitQfrg-Hk6PMqqkMsm0oWTYa9EEW8jXbnN8QJNLuocc0N7KtbBPwLCGp023sID1qzlO00evQI1nz1GO6PV5yuiycw_lQxvGTHFz8pHEqUnWzgzSUbXjd04WwW2PGlmU7Zrg_TOsWrYhTnZV_QIacSLXZkKBeMCD2fwumtiO0Z9KpZ5Z8DM9LlqUXDLJiCCPBVEHjEPASCy9j2YasTk75qODc0-iokTn1TnH0YkAxX7xBTdn1jNv-q24mnZZGnwVtrlHEyt8aWVqSJMWVpM4X43Ye3NAKa5vNybkrTliXgrxIzlt7BJU8Qa03ah81ukHQ70Rf6r1pu_P_xa7g7Ohkf6sP9ycELuMepjXCdyrYJveX8u3-Jts3SvmoVisH5bevwHx0TCcI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ5ioYAPVJyiTWwnsQ8ItWyXlrKlUinqzdixTStts-3uIuCv8euYyWPpBW49JFIeiqLxjL-Z8fgbgFfc-szLKks8x9hE8jQmVuHJKR65V0Whm5L_yUGxeyw_nOQna_C73wtDZZX9nNhM1H5WUY58iDhXCIHgo4axK4s4HI3fXlwm1EGKVlr7dhqtiuyHXz8wfFu82RvhWG9yPt75_G436ToMJJUoxDLxIdccTT6UqcO4wDrZLM25MpdZVtCaoY6IYQTz2lpEQhWc91kspHe5807gd2_AzVKUmgI_NX6_yu8Q36aSuq21F0KnQ_RATxEx0AGjFjZXULBpFvAvSGhwbnwP7nYOKttqNeo-rIX6AdyZrNhdFw9h8qlmeMmOzn5SYpTIO9l2sOds57IlDmezyI7O7XTKRiFOm2KvmlHGl33B0Jw2a7FDS1VhRO35CI6vRWiPYb2e1eEJMCt9mTt00aLVRIWvosAj5TEScKZuAJu9mMxFy75hMGohcZqr4hzANslw9Q5xZjc3ZvNvpjNBI3WZx-CcVdbL0llXOZFn1laVKxQi-QBe0wgYsuzl3Fa226CAv0ocWWYLJz9B_DX5ADb6QTKdyS_MXwV9-v_HL-EWaq75uHew_wxuc-on3NS0bcD6cv49PEcnZ-leNNrE4Ot1q-8fwk0Mkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Sixth-Order+Beam+Equation+of+Small+Deflection+with+Variable+Parameters&rft.jtitle=Mathematics+%28Basel%29&rft.au=Khanfer%2C+Ammar&rft.au=Bougoffa%2C+Lazhar&rft.au=Alhelali%2C+Nawal&rft.date=2025-03-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=13&rft.issue=5&rft.spage=727&rft_id=info:doi/10.3390%2Fmath13050727&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math13050727 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |