On the Sixth-Order Beam Equation of Small Deflection with Variable Parameters
This paper establishes an existence and uniqueness theorem for the nonlocal sixth-order nonlinear beam differential equations with four parameters of the form u(6)+A(x)u(4)+B(x)u″+C(x)u=λf(x,u,u″,u(4)),0<x<1, subject to the integral boundary conditions: u(0)=u(1)=∫01p(x)u(x)dx, u″(0)=u″(1)=∫01...
Saved in:
Published in | Mathematics (Basel) Vol. 13; no. 5; p. 727 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math13050727 |
Cover
Loading…
Summary: | This paper establishes an existence and uniqueness theorem for the nonlocal sixth-order nonlinear beam differential equations with four parameters of the form u(6)+A(x)u(4)+B(x)u″+C(x)u=λf(x,u,u″,u(4)),0<x<1, subject to the integral boundary conditions: u(0)=u(1)=∫01p(x)u(x)dx, u″(0)=u″(1)=∫01q(x)u″(x)dx and u(4)(0)=u(4)(1)=∫01s(x)u(4)(x)dx such that 1−∫01p2(x)dx=α>0,1−∫01q2(x)dx=β>0,1−∫01s2(x)dx=γ>0, under some growth condition on f, and provided that an upper bound exists for the flexural rigidity λ to guarantee that no large deflections will occur. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math13050727 |