Enhancement of photon blockade effect via quantum interference

We study the photon blockade effect in a coupled cavity system, which is formed by a linear cavity coupled to a Kerr-type nonlinear cavity via a photon-hopping interaction. We explain the physical phenomenon from the viewpoint of the conventional and unconventional photon blockade effects. The corre...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 28; no. 11; p. 16175
Main Authors Zou, Fen, Lai, Deng-Gao, Liao, Jie-Qiao
Format Journal Article
LanguageEnglish
Published 25.05.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the photon blockade effect in a coupled cavity system, which is formed by a linear cavity coupled to a Kerr-type nonlinear cavity via a photon-hopping interaction. We explain the physical phenomenon from the viewpoint of the conventional and unconventional photon blockade effects. The corresponding physical mechanisms of the two kinds of photon blockade effects are based on the anharmonicity in the eigenenergy spectrum and the destructive quantum interference between two different transition paths, respectively. In particular, we find that the photon blockade via destructive quantum interference also exists in the conventional photon blockade regime and that the unconventional photon blockade occurs in both the weak- and strong-Kerr nonlinearity cases. The photon blockade effect can be observed by calculating the second-order correlation function of the cavity field. This model is general and hence it can be implemented in various experimental setups such as coupled optical-cavity systems, coupled photon-magnon systems, and coupled superconducting-resonator systems. We present some discussions on the experimental feasibility.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.391628