MiR-93-5P Represses the Gluconeogenesis of Hepatocellular Carcinoma while Boosting Its Glycolysis and Malignant Progression by Suppressing PCK1

Herein, we explored effects of miR-93-5p and gluconeogenic rate-limiting enzyme PCK1 on HCC cells. Bioinformatics analysis and cell experiments confirmed that, compared with expression in normal tissue and cells, miR-93-5p in HCC was abnormally upregulated while PCK1 expression was remarkably downre...

Full description

Saved in:
Bibliographic Details
Published inCritical reviews in eukaryotic gene expression Vol. 32; no. 1; p. 35
Main Authors Zhou, Xianfei, Huang, Luoshun, Xing, Renwei, Yang, Fan, Nie, Hanqiu
Format Journal Article
LanguageEnglish
Published United States 2022
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Herein, we explored effects of miR-93-5p and gluconeogenic rate-limiting enzyme PCK1 on HCC cells. Bioinformatics analysis and cell experiments confirmed that, compared with expression in normal tissue and cells, miR-93-5p in HCC was abnormally upregulated while PCK1 expression was remarkably downregulated. PCK1 overexpression repressed proliferation, migration, and invasion of HCC cells, and blocked cell cycle in G0/G1 phase. During this process, glucose production was boosted while the production of pyruvate, lactic acid, citric acid, and malic acid was reduced, suggesting that the effect was related to inhibition of glycolysis and induction of gluconeogenic pathways. Elevated miR-93-5p level promoted proliferation, migration, and invasion of HCC cells, accelerated development of cell cycle, activated glycolysis, and suppressed gluconeogenesis. In addition, when miR-93-5p and PCK1 were concurrently upregulated, the abovementioned promoting effects were canceled out. These investigations demonstrated that promoting effect of miR-93-5p on HCC cell growth may be carried out by inhibiting the PCK1 expression, suggesting that miR-93-5p and PCK1 could be applied as new biomarkers or novel therapeutic targets for HCC diagnosis.
ISSN:1045-4403
DOI:10.1615/CritRevEukaryotGeneExpr.2021038907