Computational Modeling of Fracture Toughness of Al-Si and Al-Zn-Mg-Cu Alloys with Detected Porosity

This article presents the results of an experimental and numerical analysis of the fracture resistance of cast aluminum alloys subjected to variable loads over time based on the fracture mechanics method. The subjects of the analysis were the AlSi9 and AlZn6MgCu alloys (usually used for plastic proc...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials engineering and performance Vol. 28; no. 3; pp. 1373 - 1381
Main Authors Piekło, Jarosław, Garbacz-Klempka, Aldona, Żuczek, Robert, Małysza, Marcin
Format Journal Article
LanguageEnglish
Published New York Springer US 15.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article presents the results of an experimental and numerical analysis of the fracture resistance of cast aluminum alloys subjected to variable loads over time based on the fracture mechanics method. The subjects of the analysis were the AlSi9 and AlZn6MgCu alloys (usually used for plastic processing) in which the presence of porosities in the form of separate or dispersed voids was revealed experimentally. The material for the experimental procedures was obtained directly from a casting or from casting samples. Depending on the type of the defect detected, different numerical models were proposed. The results of the numerical calculations were verified experimentally. Static tensile tests, fatigue low-cycle tests, fracture mechanics tests, fatigue crack propagation tests, a microscopic examination of the sample fracture area, and an x-ray tomographic analysis were all performed. A correlation of the results between the numerical analysis and the experimental work has been found. On the basis of the proposed calculation models, the fatigue life of castings of the analyzed alloys can be predicted in the case of concentrated and dispersed defects.
ISSN:1059-9495
1544-1024
DOI:10.1007/s11665-019-03899-2