Regularization by Architecture: A Deep Prior Approach for Inverse Problems
The present paper studies so-called deep image prior (DIP) techniques in the context of ill-posed inverse problems. DIP networks have been recently introduced for applications in image processing; also first experimental results for applying DIP to inverse problems have been reported. This paper aim...
Saved in:
Published in | Journal of mathematical imaging and vision Vol. 62; no. 3; pp. 456 - 470 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The present paper studies so-called deep image prior (DIP) techniques in the context of ill-posed inverse problems. DIP networks have been recently introduced for applications in image processing; also first experimental results for applying DIP to inverse problems have been reported. This paper aims at discussing different interpretations of DIP and to obtain analytic results for specific network designs and linear operators. The main contribution is to introduce the idea of viewing these approaches as the optimization of Tikhonov functionals rather than optimizing networks. Besides theoretical results, we present numerical verifications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0924-9907 1573-7683 |
DOI: | 10.1007/s10851-019-00923-x |